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Recap

▶ Setup: given n observations Xi
iid∼ Np(0,Σ), what are the

posterior convergence rates assuming that Σ has a good
spectral gap?

▶ Under a generalized shrinkage inverse Wishart prior and given
some technical conditions, more importantly,
▶ A high dimensional setting, n/p → 0
▶ The k largest (spiked) eigenvalues of the true covariance

matrix are sufficiently separated by a constant value
▶ The non-spiked eigenvalues are bounded away from zero and

above

the authors provide posterior convergence rates borrowing
from the asymptotics on the sample covariance by Wang and
Fan (2017) and recent results based on the inverse Wishart
prior (Lee et al, 2024)
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Recap

▶ Berger, Sun, and Song (2020) proposed marrying the inverse
Wishart prior with the reference prior (Yang and Berger,
1994): with Σ = UΛU⊤, U ∈ O(p), Λ = Diag{λi} and
A = {(λ1, . . . , λp) : λ1 > · · · > λp > 0},

π(Σ) ∝ etr(−Σ−1H/2)

|Σ|a[
∏

i<j(λi − λj)]b
I (A)

▶ Thus,

π(U,Λ) ∝ etr(−UΛ−1U⊤H/2)

|Σ|a[
∏

i<j(λi − λj)]b−1
I (A)

and, if H = hIp and b = 1,

π(U,Λ) ∝
p∏

i=1

λ−a
i e

− h
2λi I (A)
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Recap

▶ Here, the authors assume a generalized shrinkage prior: with
H = hIp, b = 1, and unordered eigenvalues

π(U,Λ) ∝
p∏

i=1

λ−ai
i e

− h
2λi

▶ With the spectral decomposition of the sample covariance as∑
i XiX

⊤
i /n = QWQ⊤ and setting Γ = U⊤Q the posterior is

π(U,Λ|X ) ∝
p∏

i=1

λ
−ai−n/2
i etr(−Λ−1Γ⊤(hIp +W )Γ/2)

▶ Gibbs sampling seems to be then straightforward: with ci the
i-th diagonal entry of Γ⊤(hIp +W )Γ,

▶ λi |U,X
iid∼ Inv-Gamma(ai + n/2− 1, ci/2)

▶ Γ|Λ,X ∼ Bingham(Λ−1, hIp +W )
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Questions

▶ Let’s take a look at the induced prior on Σ: since for any
permutation σ ∈ Pp, with Λ the ordered eigenvalues of Σ,

Σ = UΛU⊤ = (UPσ)(P
⊤
σ ΛPσ)(UPσ)

⊤ := U·,σΛσU
⊤
·,σ

with ς(Σ) := {σ ∈ Pp : UσΛσU
⊤
σ = UΛU⊤ = Σ},

π(Σ) = π(ς(Σ)) ∝
∑
σ∈Pp

p∏
i=1

λσ(i)
−ai e

− h
2λi

∏
i<j

(λi − λj)
−1I (A)

▶ So, more complex than IW, which might spell trouble in
practical applications?

▶ The complexity that arises from identifying the spectral
decomposition of Σ cannot be avoided: no free lunch? See,
e.g. (Papastamoulis and Ntzoufras, 2022)
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Questions

▶ There is another source of non-identifiability: when p > n,
W = Diag(nλ̂1, . . . , nλ̂n, 0, . . . , 0), so with V = In ⊕ V2 for
V2 ∈ O(p − n),

Γ⊤(hIp +W )Γ = Γ⊤V⊤V (hIp +W )V⊤VΓ := Γ̃⊤(hIp +W )Γ̃

that is, Γ = [Γ1 Γ2] is only identified up to its first n
columns in Γ1

▶ So it seems that Γ ̸∈ O(p) but

Γ ∈ O(p)/(O(p − n)× Pp) = Vp,n/Pn

almost the Grassmannian Gn,p!
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Questions

▶ In the main two lemmas that provide shrinkage rates of the
posterior the authors define a set Dϵ,l ,

Dϵ,l =

{
Γ ∈ O(p) : min

σ∈Pk

inf
V2∈O(p−k)

∥(Pσ ⊕ V2)− Γ∥F < ϵ

}
that seems to identify Γ; is that the main motivation?

▶ If so, wouldn’t it be better to just identify Γ directly?

▶ This should also impact the normalizing constant of the prior,
which should be important when selecting k to avoid
multiplicity issues (Scott and Berger, 2010)



Questions

▶ The authors recommend that ai be specified based on the
data for faster convergence rates: with λ̂i the eigenvalues of
the sample covariance and t ∈ [λ̂k+1, λ̂n],

ai =
nt

2(λ̂i − t)
+ 2, i = 1, . . . , k

Is there a way to specify them in an objective way?

▶ There are clear connections to factor analysis [e.g. (Anderson,
1964), (Wang and Fan, 2017)], so interest might lie on
parsimonious representations of Σ [e.g.
(Frühwirth-Schnatter, Hosszejni, Lopes, 2025)], but:
▶ Selecting k might incur on biases, so would it be possible to

maintain the same posterior rates?
▶ Is there a way to specify ai as a function of p and n to induce

lower k with high probability a priori?
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Thank you
for a great paper and talk!


