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Motivation

We explore model uncertainty through the lens of predictive
inference

The predictive viewpoint highlights observables and missing data as
the source of all statistical uncertainty

If we had access to data on the full population, then any identifiable
quantity would be known, including the ‘best’ model

Make the missing data the focus of the modelling
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Predictive Approach to Uncertainty

Uncertainty stems from unobserved data xn+1:N , given observations
x1:n, where N is the total population size

Construct joint p(xn+1:∞ | x1:n) and impute missing information

Use recursive updates (chain rule) and start from the data in-hand
to construct

p(xn+1:∞ | x1:n) =
∏
i>n

p(xi | x1:i−1)

avoiding the need for prior elicitation as the starting point is
p(xn+1 | x1:n)
Inspired by de Finetti (1937) and the focus on observables, and
modern predictive inference (relaxing exchangeability).
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Key Aspects

No priors required — inference is data-driven and “objective”

Simple protocol: alternate model comparison and data simulation.

Efficient and parallelizable: computational burden is in repeated
model updating

Bayesian: in specifying a conditional distribution directly on the
model space, where uncertainty arises from the missing data – but we
don’t assume exchangeability
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Traditional Bayesian Model Uncertainty

Posterior probability of model: P(Mk | D)

P(Mk | D) =
P(D | Mk)P(Mk)

P(D)
(1)

Depends on marginal likelihood and model priors

Used in model averaging for prediction and selection
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Marginal Likelihood and Bayes Factors

Marginal likelihood integrates over model specific parameters,
P(D | Mj) =

∫
fθj (x) p(θj)dθj

Bayes factor compares model evidence

BF =
P(D | M1)P(M1)

P(D | M2)P(M2)
(2)

with a value of BF > 1 presumably indicating support for M1 over
M2, and vice versa (Kass and Raftery, 1995)

Sensitive to priors, can be complex to compute

Chris Holmes with V. Shirvaikar & S. Walker (Ellison Institute of Technology, University of Oxford, The University of Texas at Austin)Probabilistic model uncertainty June 9, 2025



Bayes Factors

A well-known problem with the Bayes factor is that it can heavily
depend on the model priors, and requires integration over parameter
spaces

Efforts to specify objective prior distributions have led to an array of
Bayes factor alternatives, such as intrinsic and fractional Bayes
Factors

These methods use some of the observed data to help specify the
prior in some way, such as by weighting the likelihood (O’Hagan,
1995) or setting aside a portion of data for “training” (Berger and
Pericchi, 1996)

This still requires an element of user choice, and can also result in the
loss of some information contained within the observed data.
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BIC as an Approximation

The Bayesian information criterion (BIC) provides an approximation
to the negative log-evidence, given by

BIC = d log n− 2 log L̂

where d is the dimension of the model, n is the sample size, and L̂ is
the maximum likelihood of the model at the optimal parameter values.

Penalizes model complexity

A tempting idea is to use exp(−BIC) as the marginal likelihood, but
Kass and Raftery (1995) show that this has a relative error of O(1) in
approximating the Bayes factor, meaning that even for large samples,
the BIC should not be used directly to extract posterior probabilities
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Recursive model sampling

Views uncertainty as missing data

With observed x1:n, the guiding principle is that uncertainty
quantification for any statistical task, including model selection,
requires the construction of a model for the data we have not
observed, given what has been observed

Alternates model selection and data simulation

Estimates P(Mk | D) via Monte Carlo
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Predictive Resampling for Model Selection

We have observed data x1:n and candidate model set {Mk}.
Use a consistent selection criterion C , such as BIC, to choose best
model M

k̂(n)
.

Sample:
xn+1 ∼ p(· | M

k̂(n)
, θ̂

k̂(n)
)

Update models and select the new best model given the additional
information

Repeat up to xN , for some large N

Pick off the final model M
k̂(N)

as a sample from the posterior
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Posterior over Model Space

Monte Carlo estimate of model uncertainty:

p(Mk | x1:n) =
1

B

B∑
b=1

1
(
M(b)

k̂(∞)
= Mk

)
Avoids priors over models or parameters.

Converts consistent model selection into a posterior over models.
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Relation to Existing Work

Related to prequential forecasting (Dawid, 1984).

Avoids Bayes factors and need for RJ-MCMC complexities.

Inspired by Draper’s notion of model expansion:

Structural uncertainty propagated by predictive updates.
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Predictive Resampling: Algorithm

Algorithm Predictive resampling

1: Specify search space of candidate models {Mk}
2: Set number of trials B and final sample size N >> n
3: for b from 1 to B do
4: for i from n + 1 to N do
5: Calculate consistent model selection criterion C (Mk(i−1), x1:i−1)
6: Optimize and identify best model M

k̂(i−1)
= argmaxk C (·, ·)

7: (If applicable) Identify parameter MLE θ̂k(i−1)

8: Sample xi ∼ p(·|M
k̂(i−1)

) and add to training data

9: end for
10: Record final model M

k̂(N)

11: end for
12: Return probabilities p(Mk | D) = B−1

∑B
b=1 1(M

(b)

k̂(∞)
= Mk)
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Note on supervised learning

For supervised learning, with covariates X and outcomes Y we copy
x1:n as a block (fixed design), yielding xn+1:2n

predict yn+1:2n using the optimal fitted model; add (x , y)n+1:2n to the
observed data; and so forth

Sampling the entire outcome vector Yk = ykn+1:n(k+1) for
k = 1, 2, . . . in blocks, rather than sampling individual observations

keeps with the idea of “repeating the experiment”, and also simplifies
the update calculation

Chris Holmes with V. Shirvaikar & S. Walker (Ellison Institute of Technology, University of Oxford, The University of Texas at Austin)Probabilistic model uncertainty June 9, 2025



Link to traditional Bayes

The approach recovers the conventional Bayesian approach when
using the usual posterior predictive to sample new observations

Rather than optimizing and sampling from the best model, we would
draw xi directly from the posterior predictive using the appropriate
model mixing weights

Each of the B trials would eventually converge to a single model

The relative proportions of these trials would converge to the initial
model mixing weights as B → ∞
The predictive framework is a generalization of standard Bayesian
model uncertainty.
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Link to Bayesian Updating

Generalizes Bayesian inference under predictive viewpoint

No explicit priors required

Based solely on observable data and a pre-selected model selection
criterion
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Simple Example: Hypothesis Testing

Compare two point hypotheses H0 : θ = θ0 and H1 : θ = θ1, for the
unknown mean parameter of a normal distribution, N(θ, 1), with
known variance σ2 = 1

Select model via maximum log-likelihood (BIC penalty with common
dimension)

Propagate uncertainty through simulation
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Experimental Setup

n = 100 observations from N (0, 1), so true hypothesis is H0

Vary θ1 from -0.3 to 0.3

B = 1000 trials, N = 2600 samples
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Experimental Setup

We draw n = 100 observations from N (0, 1), so true hypothesis is H0

We found x̄ = 0.031

We consider the evidence for the alternative θ1 = 0.01

B = 1000 trials, N = 2600 samples

Note that with x̄ = 0.031, so in this case we have M
k̂(100)

= H0,

always

That is, we always start the recursive sampling from the optimal
model given x1:n
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Recursive sampling showing sample means x̄1:n+i
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Figure: Uncertainty through sampling of missing observations, where different
possible realizations of the complete data start at the same Mk̂(n) = H0, but

individually converge to sampling from H0 or H1. The relative number of sample
paths in the two regions for large N gives the approximation to P(H0 | x1:n)
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Experimental Setup

n = 100 observations from N (0, 1), so true hypothesis is H0

Vary θ1 from -0.3 to 0.3

B = 1000 trials, N = 2600 samples
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Varying H1
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Figure: Proportion of trials in which alternate model H1 is selected as alternate
mean θ1 varies from -0.3 to 0.3. The observed sample mean x̄ is denoted by the
vertical line, while the baseline of θ0 = θ1 = 0 is denoted by the black bar.
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Convergence

It’s important to understand the convergence properties of the model
choice in this simplest setting

For k ∈ {0, 1}, define the likelihood as

Lm(k) =
m∏
i=1

N (xi | θ̂k , 1)
N (xi | θ̂(m−1), 1)

where θ̂(m−1) maximizes
∏

i=1:m−1N (xi | θ, 1) with θ ∈ {θ0, θ1}.
Then

E (Lm(k) | x1:m−1) =
m−1∏
i=1

N (xi | θ̂k , 1)
N (xi | θ̂(m−1), 1)

≤ 1,

and also E (Lm(k) | x1:m−1) ≥ Lm−1(k)

Hence, for both k ∈ {0, 1} it is that Lm(k) converges due to the
martingale convergence theorem

The hypothesis selected maximizing L∞(k); in the limit, L∞(k) will
either be 0 or 1
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Interpreting Summary Statistics

x̄ drives the model choice

Partition dataset space via predictive distribution

Links model uncertainty to decision boundaries in observation space
at x1:∞, given x1:n

In contrast to p-values, predictive resampling can provide a direct
probability both for and against a null hypothesis without assigning a
prior probability over the hypothesis space using just the observed
sample
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Consistent Model Selection

The approach requires the specification of a model selection criterion,
which will be used to select the best model at each step for the
generation of xn+1 given observed x1:n, and ultimately to select the
best final model for each possible realization of the complete data

The key requirement for this criterion is therefore that it be
consistent, i.e. that the probability of selecting the correct model
converges to 1 as N → ∞ (Claeskens and Hjort, 2008).

BIC is consistent and interpretable

BIC also has a Predictive and Bayesian justification
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Cross-Validation Pitfalls

One might be tempted by cross-validation procedures such as
Leave-One-Out (LOO) or AIC

However, LOO-CV and AIC are inconsistent Shao (1993)

from a predictive perspective it seems odd to use an inconsistent
selection criteria

Leave-p-out CV better but expensive

It has also been highlighted that Bayesian LOO-CV can be unreliable
Vehtari et al. (2017) and Sivula et al. (2023)
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Convergence under more general models

Given x1:m, let Mk̂(m)
be the optimal candidate model under a

consistent model selection criterion, with any necessary parameter
MLE(s) denoted by θ̂

k̂(m)

We sample xm+1 from the predictive p(· | M
k̂(m)

, θ̂
k̂(m)

), append it to

our dataset yielding x1:m+1, and repeat this process.

As before, a key requirement is that the model choice k̂(m) converges
to some k(∞) as the sample size grows from m → ∞
We demonstrate this first for the case where the intermediate models
are selected by maximum likelihood, and then for the case where this
likelihood is penalized (as in the AIC, BIC, or LASSO)
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Convergence for penalized likelihood

Proposition

The model M
k̂(m)

selected by sequential penalized maximum likelihood
converges as m → ∞.

Proof.

We now consider

Lm(k , θk(m)) = c(m, dk , θk(m))
m∏
i=1

p(xi | Mk(m), θk(m))

p(xi | Mk̂(m−1)
, θ̂

k̂(m−1)
)
,

and

E (Lm(k , θk(m)) | x1:m−1) = Lm−1(k , θk(m))
c(m, dk , θk(m))

c(m − 1, dk , θk(m−1))
.

where c is a penalty function
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c is a penalty function in terms of the sample size m, model
dimension d , and parameter θ. For AIC, c(m, d , θ) = e−d ; for BIC,
c(m, d , θ) = e−d logm; and for Lasso, c(m, d , θ) = e−λm|θ|, for some
increasing λm > 0; c = 1 for ML model

This remains a supermartingale when c decreases as m increases,
which is the case for the key model selection criteria listed

Hence, for each (k , θk(m)), we have Lm(k , θk(m)) → L∞(k, θk(∞))
almost surely for some L∞

To extend this to uniform convergence, similar model conditions as
for the convergence of an MLE are required, namely that each Θk is a
compact space and each p(x | Mk(m), θk(m)) is suitably regular

BIC is both consistent and converges
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Illustration: Density Estimation

Code for all illustrations can be found at
https://github.com/vshirvaikar/MPModel

A typical model selection question is the number of components
required in a finite Gaussian mixture model (GMM) for density
estimation

We generate n = 20 and n = 50 data points from a GMM with G = 3
components

f0(y) = 0.4N (y | −3, 1) + 0.3N (y | 0, 1) + 0.3N (y | 4, 1)

where the goal is to identify and return uncertainty around the true
value of G
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(b) Density for n = 50 observations

Figure: Kernel density plots for data generated from GMM with 3 components
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Density estimation

We implement a DPMM with the dirichletprocess package in R using
the default prior and hyperparameters (Ross and Markwick, 2019)

For eight separate Gibbs sampling chains, we discard the first 500
iterations as burn-in and retain the next 2,000 iterations
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DPMM
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(a) Components for n = 20 observations
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(b) Components for n = 50 observations

Figure: Posterior uncertainty over number of components G sampled in DPMM
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For the n = 20 case (Figure 4a), the mode is 5 components, and for
n = 50 (Figure 4b) the mode is 7 components, both more complex
than the “true” G = 3

This reflects the known result that DPMM should not be used to
estimate the number of components, which asymptotically tends
towards infinity as n increases (Yang et al., 2019; Cai et al., 2020).
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Predictive Resampling

For the resampling approach, we implement EM clustering with the
mclust package in R with specified candidate models ranging from 1
to 9 components

Models with both equal and unequal variances are tested, with
differing dimension penalties in the BIC calculation

Simple to apply our approach as a wrapper around existing software –
turning a model selection procedure into a posterior distribution on
the model space

We recursively simulate N = n+600 new observations per trial across
a total of B = 400 trials; this value of N is again empirically found to
be sufficiently large that Mk(N) closely approximates Mk(∞), with
convergence diagrams provided in the paper

Chris Holmes with V. Shirvaikar & S. Walker (Ellison Institute of Technology, University of Oxford, The University of Texas at Austin)Probabilistic model uncertainty June 9, 2025



Resampling approach
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(b) Components for n = 50 observations

Figure: Posterior uncertainty over number of components G via resampling
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Conclusions

We view model uncertainty through the lens of missing information

With a consistent model selection criterion in hand, we would be able
to reliably identify the correct model if we had the complete data

The imputation of missing observations converts a generative model
selection criterion directly into probabilities over the space of
candidate models

The approach serves as a form of model expansion around the initial
best model for the observed data, as discussed by Draper (1995), and
also echoes the prequential argument of Dawid (1984) with its focus
on step-by-step prediction as the fundamental object of statistical
modeling
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Conclusions II

The approach is data driven (objective), doesn’t use priors, and
avoids some of the sensitivities of Bayes Factors

The approach is Bayesian, in that it provides a probabilistic measure
of model uncertainty directly on the model space conditional on the
observations x1:n

The method requires rapid optimization over the model space to be
efficient

Paper with further details: Shirvaikar, V., Walker, S. G.,

Holmes, C. (2024). A general framework for probabilistic

model uncertainty. arXiv preprint arXiv:2410.17108.
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