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     Recap
Ed, Pankaj, and Bill found conditions under which there exist proper 
Bayes, minimax, multiple shrinkage estimators in the normal means 
problem.  

This complements George (1986), who showed that certain multiple 
shrinkage estimators under improper priors are minimax.   

The key is breaking down the sample space into two overlapping regions 
and carefully studying the behavior of the underlying marginal on the two 
regions. 

A clever rescaling of the prior based on the marginal’s behavior over the 
more difficult of the two regions provides conditions under which a 
proper Bayes estimator that is minimax exists. 

Congratulations on an interesting result—it’s inspiring to see long-term 
dedication to thinking about a problem pay off!



     Strawderman prior
A key example prior is the proper Strawderman prior:

In the context of shrinkage toward multiple targets, θ1, …, θK, a minimax 
estimator of μ can be constructed by replacing the marginal density mπ(t) and 
its corresponding r(t) with ma(t) ∝ mπ(t / a) and ra(t) = r(t / a), where a > 0 is 
an appropriately chosen constant. 

• For some α and θ1, …, θK, a = 1 suffices and the estimator under the 
proper Strawderman prior is minimax. 

• Otherwise, the resulting estimator can be thought of as arising from the 
prior on λ that generates the marginal density ma(t).
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     Rescaling
Appropriate scaling factors a satisfy:
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Depends only on properties of 
r(t), or, equivalently, mπ(t).

<latexit sha1_base64="De7Rx7tKPFKESD2147Kna3KMnwU="></latexit>

D = max
i →=j

||ωi → ωj ||2

For a given class of priors, the choice of shrinkage targets drives the rescaling.

What happens in the extreme cases? 

For what values of α and D is the multiple shrinkage estimator under the proper 
Strawderman prior minimax?



     Shrinkage Targets

When the shrinkage targets are all close to each other, D ≈ 0, and a = 1 
(no rescaling) should suffice.

Makes sense: aren’t really doing “multiple” shrinkage and the 
usual minimax result for shrinkage toward a single target 
should apply.

When at least one shrinkage target is far apart from one of the others, D 
will be large, and a large amount of rescaling (a ≫ 1) is needed.

r(ti) is increasing for Strawderman’s prior, so large a results in 
less shrinkage.

What happens in the extreme cases?



     Shrinkage Targets
For what values of α and D is the multiple shrinkage estimator under the proper 
Strawderman prior minimax?
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     Global vs. Local Rescaling

The amount of rescaling required is driven by the pair of shrinkage targets 
that are farthest away from each other. 

The scaling applies globally to all components of X. 

Rich literature on global vs. local shrinkage (e.g., Carvalho, Polson and Scott, 2010; 
Polson and Scott, 2010; Polson and Scott, 2012; van der Pas, et al., 2014, 2017; etc.). 

Som, Hans and MacEachern (2014, 2016) describe undesirable 
consequences of global mono-shrinkage in regression (OBayes 2015). 

• Could the components of X be rescaled locally so that the rescaling has 
less of an impact? 



     Shrinkage Targets and Weights

The amount of rescaling required to guarantee minimaxity depends on both 
the shrinkage targets, θ1, …, θK, and the properties of the underlying marginal 
distribution, mπ(x), but not on the shrinkage target weights, wi. 

Do we need to be concerned about one shrinkage target, θi, that is far away 
from the others if the corresponding weight, wi, is very small? 

In weak prior information settings, do the results help us think about how to 
select shrinkage targets and/or corresponding weights? 

Of interest to me: Hans, Peruggia and Wang (2023) examine the interplay 
between shrinkage targets and marginal likelihoods in regression with 
influential observations.



     Conclusion

Thanks for a great talk!


