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• Learning statistics from counter examples: ancillary statistics was a

famous article by Debabrata Basu (Basu, 2011).

• For a recent volume in Sankyha honoring Basu, I recently wrote an

article with the same title (Berger, 2024).

• The counterexamples in this talk are taken from the 22 counterexamples

in that paper, or from Objective Bayesian Inference.
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Counterexample to Inverse Probability

Laplace invented inverse probability (a name given by Augustus de Morgan

in 1838) and rediscovered Bayes theorem.

• Inverse probability proceeded by

– choosing or developing a probability model f(x | θ) for the data x, given

unknown parameters θ;

– choosing the prior π(θ) = 1;

– obtaining the posterior

π(θ | x) =
f(x | θ)× 1

∫

f(x | θ)× 1 dθ
;

– finding the median of this posterior distribution (as well as other features).

• This was the standard method of statistical analysis until about 1930

(i.e., for over 150 years), and is still in use today.

The main counterexample to inverse probability: it is not invariant to

parameterization.
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Example: In analysis using the normal distribution, the parameterizations

used for the scale parameter in the 19th century were σ, σ2, 1/σ2 and log σ.

Using a constant prior for each parameterization results, say, in the

posterior distribution of the normal mean being a t-distribution, but with

differing degrees of freedom.

Proposed fix during the 1930’s by Harold Jeffreys: If the data model

density is f(x | θ) the Jeffreys-rule prior for the unknown θ = (θ1, . . . , θk) is

|I(θ)|1/2dθ1 . . . dθk

where I(θ) is the k × k matrix Fisher’s information matrix with (i, j) entry

I(θ)ij = EX | θ

[

−
∂2

∂θi∂θj
log f(X | θ)

]

.

• This is invariant to parameterization!

• But yielded the wrong degrees of freedom for the normal mean problem.

• Welch and Peers (1963) showed that, for one dimensional θ, the

Jeffreys-rule prior essentially gives optimal frequentist answers.
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The greatest counterexample in statistics: the Likelihood Principle

• Two core components of frequentist theory in 1961 were

– The sufficiency principle.

– The conditionality principle; as in the following David Cox example.

Example: An employee is randomly given either a measurement instrument

with variance 1 (new) or one with variance 3 (old) to perform assays.

• Conditional inference: For each measurement, report variance 1 or 3,

depending on the instrument being used.

• Unconditional inference: The overall variance of the assays is
1
2 × 1 + 1

2 × 3 = 2, so report a variance of 2 regardless of the instrument

actually being used.

The conditionality principle says to do the conditional inference.
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Focus on the likelihood function L(θ) = f(x | θ), for the observed data x.

Likelihood Principle (LP):

• All the information about θ obtainable from an experiment is contained

in L(θ). Thus frequentist averaging over x would be precluded!

• Two likelihood functions L1(θ) and L2(θ) (from the same or different

experiments but about the same θ) contain the same information about

θ if they are proportional to one another.

Virtually all frequentists viewed the LP as being wrong, but Birnbaum

(1962) proved that the LP is a logical consequence of the sufficiency

principle and conditionality principle!

The LP does not say how to use L(θ), but OBayes provides the most

natural use.
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Frequentist counterexamples that strongly impacted OBayes

Optimal frequentist procedures must be Bayesian.

• Consider a decision rule δ(x), with L(δ(x), θ) being the loss if the

decision rule is used and θ is the parameter.

• The quality of δ is measured by the risk function

R(δ, θ) = E[L(δ(X), θ)] ,

where the expectation is with respect to X given θ.

• δ is admissible [inadmissible] if it cannot [can] be improved in risk,

improvement meaning there is a δ∗(x) such that R(δ∗, θ) ≤ R(δ, θ) for

all θ with strict inequality for some θ.

• Theorem (Wald, Stein, Farrell): Any admissible decision rule must be

generalized Bayes, i.e. Bayes with respect to a proper or improper prior.
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Stein shrinkage estimation
• Independently, Xi ∼ N(θi, 1), i = 1, 2, . . . , p; define x = (x1, x2, . . . , xp).

• It is desired to estimate θ = (θ1, θ2, . . . , θp) with an estimator

δ(x) = (δ1(x), δ2(x), . . . , δp(x)), under the loss

L(δ, θ) =
∑p

i=1(δi(x)− θi)
2.

• The maximum likelihood estimate, unbiased estimate, fiducial estimate

and inverse probability Bayes estimate is δ(x) = x.

• Blyth (1951) showed this was admissible for p = 1.

• Stein (1959) showed this was admissible for p = 2.

• James and Stein (1960) showed this was inadmissible for p ≥ 3, with

improvement obtained by the shrinkage estimator

δ
JS(x) =

(

1−
(p− 2)

|x|2

)

x .

• While unintended, this gave considerable impetus to the hierarchical

Bayes movement, because hierarchical Bayes was all about shrinkage.
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Counterexamples to use of the multivariate Jeffreys-rule prior:

The most commonly used prior in objective Bayesian analysis is the

Jeffreys-rule prior (Jeffreys, 1961), given by πJ(θ) = |I(θ)|1/2, where I(θ) is

the Fisher information matrix.

• This is great if the parameter is one-dimensional.

• It is bad in higher dimensions; here are two examples.

Example. Inconsistency in the Neyman-Scott problem.

x = {xij}, i = 1, . . . ,m, j = 1, 2, has density

p(x |µ1, . . . , µm, σ2} =
m
∏

i=1

2
∏

j=1

N(xij |µi, σ
2) .

Neyman and Scott (1948) showed that the maximum likelihood estimator of

σ2 is inconsistent as m → ∞. So is the posterior distribution of σ2 when

using the Jeffreys-rule prior π(µ1, . . . , µm, σ2) ∝ σ−(m+2); indeed, the

posterior converges to a point mass at half the true value of σ2.
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Example. Underdispersion in the Multinomial Problem (Berger, Bernardo

and Sun (2015)). Suppose x = (x1, . . . , xm) is Multinomial(x |n, θ1, . . . , θm).

The Jeffreys-rule prior is

πJ(θ1, . . . , θm) ∝
(

1−
∑m

j=1
θj

)−1/2 m
∏

j=1

θ
−1/2
j , (1)

which is the Dirichlet((θ1, . . . , θm) | ( 1
2
, . . . , 1

2
)) distribution. The

corresponding posterior distribution is

Dirichlet((θ1, . . . , θm) | (x1 +
1
2
, . . . , xm + 1

2
)). This is problematical:

• Suppose n = 3, m = 1000, x240 = 2, x876 = 1, and the other xi = 0.

• The posterior means can be shown to be

E[θi |x] =
xi + 1/2

∑m
j=1[xj + 1/2]

=
xi + 1/2

n+m/2
=

xi + 1/2

503
.

• Thus E[θ240 |x] = 2.5/503 = 0.005, E[θ876 |x] = 1.5/503 = 0.003, and

E[θi |x] = 0.5/503 = 0.001 for the cells with no observations.

– Particularly troubling is that cell 240 has two of the three observations,

but posterior probability 0.005.
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Counterexamples suggesting elements of reference prior theory

• In nonregular problems the Fisher information will typically not exist,

so there is no Jeffreys-rule prior; reference prior theory utilizes a much

more general notion of asymptotic missing information that applies in

almost complete generality.

• The problems with the multivariate Jeffreys-rule prior are resolved in

reference prior theory by

– recognizing that objective priors should depend on the parameter of

interest – σ2 in the Neyman-Scott example and individual cell

probabilities in the multinomial problem –

– sequentially deriving the reference prior one parameter at a time, a

generalization of the independence Jeffreys prior for the normal

problem.
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Counterexamples relevant to OBayes hypothesis testing
• The Bartlett (1957) paradox that, in testing a point null hypothesis

versus a compound alternative, the use of increasingly vague proper

priors on the alternative causes the posterior probability of the null

hypothesis to go to 1, regardless of the data. (Of course, this was

implicit in Jeffreys development of Bayesian hypothesis testing.)

• In model uncertainty, assigning all models equal prior probability often

fails to lead to multiplicity control of false positives (Scott and Berger

(2010)).

• In model uncertainty, the maximum posterior probability (MAP) model

is often not the best single model. Often better (Barbieri and Berger

(2004)) is the median probability model defined by

– Calculating the posterior inclusion probability of the features used to

define the models.

– Choosing the model to be that which includes only the features

whose posterior inclusion probability exceeds 0.5.
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Example. The Hald regression data set, that has been used by several

authors (see Burnham and Anderson (1998)), has n = 13 observations y that

are regressed on four possible regressors: x1, x2, x3, x4, the full model being

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ǫ, ǫ ∼ N(0, σ2) ,

with σ2 unknown. Consider the models defined by subsets of regressors,

with the intercept being present in all models. Thus

Model {1, 3, 4} denotes the model y = β0 + β1x1 + β3x3 + β4x4 + ǫ .

Table 1 reports the results of a model uncertainty analysis using the

encompassing AIBF approach of Berger and Pericchi (1996).
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Table 1: Posterior model probabilities and excess predictive risks (the dif-

ference between predictive risk of the model and the predictive risk of the

optimal model averaged prediction, assuming square error predictive loss).

Model Pr(Mi | y) ∆R(Mi)

null 0.000003 2652.44

{1} 0.000012 1207.04

{2} 0.000026 854.85

{3} 0.000002 1864.41

{4} 0.000058 838.20

{1,2} 0.275484 8.19

{1,3} 0.000006 1174.14

{1,4} 0.107798 29.73

Model Pr(Mi | y) ∆R(Mi)

{2,3} 0.000229 353.72

{2,4} 0.000018 821.15

{3,4} 0.003785 118.59

{1,2,3} 0.170990 1.21

{1,2,4} 0.190720 0.18

{1,3,4} 0.159959 1.71

{2,3,4} 0.041323 20.42

{1,2,3,4} 0.049587 0.47
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The posterior inclusion probabilities here (the overall probability that a

variable is in a model) are

p1 =
∑

j:x1∈Mj
Pr(Mj | y) = 0.95, p2 =

∑

j:x2∈Mj
Pr(Mj | y) = 0.73 ,

p3 =
∑

j:x3∈Mj
Pr(Mj | y) = 0.43, p4 =

∑

j:x4∈Mj
Pr(Mj | y) = 0.55.

Thus the median probability model, the model consisting of those variables

whose posterior inclusion probability exceeds 0.5, is {1, 2, 4}.
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The Jeffreys (1939)-Lindley (1957) ‘Paradox’: In testing with very large

sample sizes, a frequentist can think that there is overwhelming evidence

against the null hypothesis, while a Bayesian thinks there is overwhelming

evidence in favor of the null hypothesis.

Psychokinesis Example: Do people have the ability to perform

psychokinesis, affecting objects with thoughts?

The experiment: Schmidt, Jahn and Radin (1987) used electronic and

quantum-mechanical random event generators with visual feedback; the

subject with alleged psychokinetic ability tries to “influence” the generator.
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Stream of particles

Quantum
Gate

Red light

Green light

Quantum mechanics
implies the particles are
50/50 to go to each light

Tries to make
the particles to
go to red light

Á
 Á
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Data and model:

• Each “particle” is a Bernoulli trial (red = 1, green = 0)

θ = probability of “1”

n = 104, 490, 000 trials

X = # “successes” (# of 1’s), X ∼ Binomial(n, θ)

x = 52, 263, 470 is the actual observation

To test H0 : θ = 1
2 (subject has no influence)

versus H1 : θ 6= 1
2 (subject has influence)

• P-value = Pθ= 1

2

(|X − n
2 | ≥ |x− n

2 |) ≈ .0003.

From a frequentist perspective, this would seem to ve very strong

evidence in favor of psychokinesis.
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Bayesian Analysis: (Jefferys, 1990)

• The objective Bayesian prior distribution would be

Pr(H0) = Pr(H1) =
1
2 and π(θ) = 1 (on 0 < θ < 1).

• Computation yields

– Pr(H0 | x = 52, 263, 470) ≈ 0.92 (recall, p-value ≈ .0003).

– Posterior density on H1 : θ 6= 1
2 is the

Be(θ | 52, 263, 471 , 52, 226, 531) density.
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• Choice of the Uniform prior on H1 is highly questionable.

• A robust Bayesian analysis would, say, consider

πr(θ) = U(θ | 1
2 − r, 1

2 + r); here r could be interpreted as the the largest

change in success probability that you would expect, given that

psychokinesis exists.

• One could then study the posterior probability as a function of r.
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A counterexample to interpreting p-values as error rates: Data X

has a specified distribution under the null hypothesis, and p(·) is a proper

p-value under the null. Here is a result from Vovk (1993).

Theorem. A proper p-value, p(·), satisfies H0 : p(X) ∼ Uniform(0, 1) (the

definition of a proper p-value). Test this hypothesis versus

H1 : p ∼ Beta(1, b), b > 1. Letting B01 denote the Bayes factor of H0 to H1,

B01 =
1

b(1− p)(b−1)
≥ −e p log(p) for p < e−1 . (2)

• The Beta(1, b), b > 1, are decreasing in p, which is natural.

• This class can be generalized to the class of all priors such that

Y = − log(p) has a non-increasing failure rate (Sellke et al., 2001), a

natural non-parametric condition that covers most cases of interest.

An analogous bound can be given on the conditional Type I frequentist

error (see Berger et al. (1994) for definition):

α(p) ≥ (1 + [−e p log(p)]−1)−1.
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p .2 .1 .05 .01 .005 .001 .0001 .00001

−ep log(p) .879 .629 .409 .123 .072 .0189 .0025 .00031

α(p) .465 .385 .289 .111 .067 .0184 .0025 .00031

Table 2: p-values and the associated lowest possible Bayes factors and condi-

tional frequentist error probabilities.

So p-values are much too small (often orders of magnitude too small) to

have any interpretation as error probabilities.
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• Although very simple, there was initially concern that the −ep log(p)

bound is too small, since it is known that Bayes factors can depend

strongly on the sample size n, and the bound does not.

• But the following studies indicate that this might not typically be a

problem. These studies

– look at large collections of published studies where 0 < p < 0.05;

– compute a Bayes factor, B01 for each study;

– graph the Bayes factors versus the corresponding p-values.

• The lower boundary in all figures is essentially the lower bound

−e p log(p) and is given by the dashed lines in the figures), indicating

that it is often an accurate bound.

The first two graphs are for 272 ‘significant’ epidemiological studies with

two different choices of the prior; the third for 50 ‘significant’ meta-analyses

(these three from J.P. Ioannides, Am J Epidemiology, 2008); and the last is

for 314 ecological studies (reported in Elgersma and Green, 2011).
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Counterexamples to subjective Bayes

Overly precise elicitations: The folklore in Bayesian statistics is that, if

someone is asked to give their prior estimate of an unknown quantity and

assess the likely error in their estimate (say by stating the variance of their

estimate), they will underestimate the error by at least a factor of 3.

Example. Underestimating variances involving Cepheid variable stars.

• Observations x1, . . . , xn were independentlhy N(x |µ, σ2
i ), with the σ2

i

being specified and claimed to be very accurate.

• A small part of Barnes III et al. (2003) studied this claim, by modeling

the observations xi as, instead, being N(xi |µ, τ
2σ2

i ) random variables,

with τ2 unknown and assigned the objective prior π(τ2) = 1/τ2.

• The posterior distribution of τ2 was centered at about 2 in one study

and around 4 in another. These estimated variances arose from some of

the most careful subjective elicitations in science, and yet they

prominently underestimated the error.
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Example. Hidden (bad) impacts of conjugate prior distributions

for covariance matrices:

• Consider i.i.d. multivariate normal data (x1, . . . ,xn), where each

k-dimensional column vector xi ∼ Nk(x |0,Σ), with Σ unknown.

• The most commonly used subjective prior for Σ is the Inverse Wishart prior,

for subjectively specified a and b, π(Σ) ∝ |Σ|−a/2 exp{− 1
2
tr[bΣ−1]}.

• Consider the spectral decomposition Σ = ODO
′

, with O being an orthogonal

matrix and D being a diagonal matrix with diagonal entries

d1 > d2 > · · · > dk.

• Changing variables to O and D yields (see Yang and Berger (1994))

π(Σ) dΣ ∝ |D|−a/2 exp{− 1
2
tr[bD−1]}

∏

i<j

(di − dj) · I[d1>···>dk] dD dO,

where I[d1>···>dk] denotes the indicator function on the given set.

• The term
∏

i<j(di − dj) is near zero when any eigenvalues are close, so the

inverse Wishart prior forces apart the eigenvalues of the covariance matrix,

contrary to typical judgement.
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