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Correlation vs causation

Correlation does not imply causation
Chocolate and Nobel prize winners

Understanding causation

� Manipulability

� Intervention

J. Woodward (2001). Causation and
manipulability
J. Pearl (2009). Causality: models,
reasoning, and inference. 2nd edn

� Epidemiology
J. M. Robins, M. A. Hernan, and B. Brumback (2000)

� Agriculture
S. Wright (1921)

� Econometrics

T. Haavelmo (1944); K. D. Hoover (2001)
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Causal effect

Definition

A random variable X has a causal
effect on a random variable Y if
there exist x 6= x′ such that the
distribution of Y after intervening on
X and setting it to x differs from the
distribution of Y after setting X to
x′

Gene A is correlated with the phenotype, and so is gene B
However only gene A ha a causal effect on the phenotype

The correlation between gene B and the phenotype is due to a common confounder
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Correlation and Causation: what’s the connection?

Principle

If two random variables X and Y are
statistically dependent X 6⊥⊥ Y
then there exists a random variable Z
which causally influences both of
them and which explains all their
dependence that is
X⊥⊥Y |Z (c)
As a special case, Z may coincide
with X or Y (a) or (b)

(a)

X Y

(b)

X Y

(c)

X Z Y
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Chocolate consumption and # of Nobel laureates

(a) 7

X Y

(b) 7

X Y

(c) 3

X Z Y

X: Chocolate consumption
Y: # Nobel laureates
Z: Economic factor

� The class of observational
distributions over X and Y that can
be realized by these models is the
same in all three cases

� Cannot distinguish among a), b)
and c) through passive observation
i.e., in a purely data-driven way

� Z latent confounder
drives consumer spending and
investment in education and
research
[from background knowledge]
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Making Sense of Correlation

� Correlation is still useful

� Causality is not always needed

� Gene A and gene B remain
useful features for making
predictions

� In a passive, or observational,
setting

� we measure the activities of
certain genes
and are asked to predict the
phenotype

� However, if we want to answer
interventional questions

� the outcome of a gene
knockout experiment

� the effect of a policy enforcing
a job training program (or
higher chocolate
consumption)

� We need more than correlation

� We need a causal model
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Causal Graphical Model

Definition

A Causal Graphical Model (CGM) M = (G, p) over n random variables
X1, . . . , Xn consists of

� a directed acyclic graph (DAG) G in which directed edges (Xj → Xi)
represent a direct causal effect of Xj on Xi;

� a joint distribution p(X1, . . . , Xn) which is Markovian w.r.t. G

p(X1, . . . , Xn) =

n∏
i=1

p(Xi |PAi); PAi = {Xj : (Xj → Xi) ∈ G}

PAi is the set of parents, or direct causes, of Xi in G
Decomposition of the joint distribution into causal conditionals
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Four variables

X1 X4

X2 X3

P (X1, X2, X3, X4) =

P (X1)P (X4)P (X2 |X1)P (X3 |X1, X2, X4)
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Causal Markov Condition

Definition

A joint distribution satisfies the causal Markov condition w.r.t. a DAG G if
every variable is conditionally independent of its non-descendants in G
given its parents in G

X1 X4

X2 X3

X2⊥⊥X4 |X1

X4⊥⊥{X1, X2}

p(X1, . . . , Xn) =
∏n

i=1 p(Xi |PAi) iff the Causal Markov Condition holds
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Intervention on a causal DAG

Central idea

Intervening on a variable, by
externally forcing it to take on a
particular value,
renders it independent of its causes

and breaks their causal influence

� do-operator

� graph-surgery
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Three variables and a graph

X1

X2 X3
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From graph G to G′

X1

X2 X3

Starting graph G
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From graph G to G′

X1

x2 X3

Post-intervention graph G′ for do(X2 = x2).
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From graph G to G′′

X1

X2 x3

Post-intervention graph G′′ for do(X3 = x3).
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More on do(X = x)

� Intervention and Conditioning radically different

� Conditioning is passive

� Intervention is active
� if a gene is knocked out, it is no longer influenced by other genes that

were previously regulating it
instead, its activity is now solely determined by the intervention

Note

This is fundamentally different from conditioning, because passively
observing the activity of a gene provides information about its driving
factors (i.e., its direct causes)

p(y |x) 6= p(y | do(X = x))
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Example

X1

x2 X3

DAG G′ for do(X2 = x2)

p(X3|do(X2 = x2))

=
∑
x1

p(x1)p(X3|x1, x2)

X1

X2 X3

DAG G

p(X3 |x2)

=
∑
x1

p(x1 |x2)p(X3 |x1, x2)
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Structural Causal Model

Definition

An SCM M = (F, pU ) consists of

i) a set F of n assignments
(the structural equations )

F = {Xi := fi(PAi, Ui), i = 1, . . . , n}

PAi ⊆ {X1, . . . , Xn} \Xi: causal parents
Ui’s: noise variables

ii) a joint distribution pU (U1, . . . , Un)
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Features of an SCM

� Each Xi is generated from other variables through a deterministic
mechanism F

� Randomness originates from Ui’s
stochasticity of the process
uncertainty due to unmeasured parts

� Xi := fi(PAi, Ui) asymmetry between LHS and RHS

� In parametric linear form (linear fi)
SCMs are also known as structural equation models
(path analysis)
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Linking SCM’s and CGM’s

Definition

The causal graph G induced by an SCM is the directed graph with vertex
set {X1, . . . , Xn} and a directed edge from each vertex in PAi to Xi for
all i.

Example
SCM over {X1, X2, X3} with some pU (U1, U2, U3)

X1 := f1(U1), X2 := f2(X1, U2), X3 := f3(X1, X2, U3)

X1

X2 X3

induced DAG G
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Difference between CGM and SCM

SCM allows for a rich class of causal models
including models with
cyclic causal relations
not obeying the causal Markov condition
(because of complex covariance structures between the noise terms)

Further common assumptions

A1) Acyclicity: the induced graph G is a DAG

A2) Causal sufficiency/no hidden confounders: the Ui’s are jointly
independent, i.e.

pU (U1, . . . , Un) = pU1(U1)× . . . pUn(Un)

Acyclicity and Causal sufficiency ensure that the distribution induced
by an SCM factorises according to its induced causal graph G
(and the causal Markov condition is satisfied w.r.t. G)
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Interventions in SCM’s

Definition

An intervention do(Xi = xi) in an SCM M = (F, pU ) is modeled by

� replacing the i-th structural equation in F by Xi = xi

� remaining Fj ’s remain unchanged (j 6= i)

Result is the interventional SCM Mdo(Xi=xi) = (F ′, pU ).

From Mdo(Xi=xi) = (F ′, pU )
deduce the interventional distribution p(X−i | do(Xi = xi))
and the intervention graph G′
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Interventions in SCM

SCM M = (F, pU )

X1 := f1(U1), X2 := f2(X1, U2), X3 := f3(X1, X2, U3)

SCM Mdo(X2=x2) = (F ′, pU )

X1 := f1(U1), X2 := x2, X3 := f3(X1, X2, U3)

Graph G′ induced by Mdo(X2=x2) 1

X1

x2 X3

1This way of handling interventions coincides with that for CGMs
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Seeing, Doing, Imagining
The ladder of causality

Level 1: Association
(Seeing)

Level 2: Intervention
(Doing)

Level 3: Counterfactuals
(Imagining)
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Observations, interventions, counterfactuals

i) observation

passively seen or measured
ii) intervention

external manipulation or experimentation
iii) counterfactual

what would have been, given that something else was in fact observed

Issues with counterfactuals

Cannot be observed empirically

unfalsifiable

unscientific (Popper, 1959)

problematic (Dawid, 2000)

Yet, humans seem to perform counterfactual reasoning in practice starting in early

childhood (Buchsbaum et al., 2012)
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Counterfactuals

“Given that patient X received treatment A and their health got worse,
what would have happened if they had been given treatment B instead, all
else being equal?”

� SCMs provide a suitable framework for counterfactual reasoning

� Observing what actually happened
provides information about the background state of the system
namely the noise terms {U1, . . . , Un} in an SCM

� This differs from an intervention where such background information
is not available
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� Observing that treatment A did
not work may tell us that the
patient has a rare condition

� this provides information on
their background state of
health

� This, in turn, suggests that
treatment B might have worked

� However, given that treatment
A has been applied, patient’s
condition may have changed

� so condition ”all else being
equal” fails

� and B may no longer work in a
future intervention on this
specific patient
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Definition (Counterfactuals in SCM ’s)

Given evidence X = x observed from an SCM M = (F, pU )
the counterfactual SCM MX=x is obtained by updating pU to pU |X=x

MX=x = (F, pU |X=x)

Counterfactuals are then computed by performing interventions in the
counterfactual SCM MX=x
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Computing counterfactuals with SCM: Example

SCM M = (F, pU )

X := UX , Y := 3X + UY ; UX , UY
iid∼ N(0, 1)

We observe X = 2 and Y = 6.5
and want to answer the counterfactual question
“What would Y have been, had X = 1?”

We are thus interested in

pM
X=2,Y =6.5;do(X=1)

(Y )
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Example ctd

Recall: X := UX , Y := 3X + UY , UX , UY
iid∼ N(0, 1)

� Update the noise distribution pU → pU |X=2,Y=6.5

UX ∼ δ(2), UY ∼ δ(0.5)

� Obtain the updated SCM MX=2,Y=6.5 = (F, pU |X=2,Y=6.5)

� Perform the intervention do(X = 1) on MX=2,Y=6.5

pM
X=2,Y =6.5;do(X=1)

(Y ) = δ(3.5)

� Above differs from the interventional distribution
Y | do(X = 1) ∼ N(3, 1)
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Example ctd

2. the observed data (X, Y ) = (2, 6.5)

1. the SCM M we start with 3. the intervention do(X = 1)

pM
(X,Y )=(2,6.5);do(X=1)

(Y )

4. the distributn of the variable we are interested in
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Factorizations
Altitude and Temperature

� Disentangled factorization

p(A, T ) = p(A)p(T |A)

� Entangled factorization

p(A, T ) = p(T )p(A |T )

Only in the disentangled factorization
some components generalize across
inteventions/domains

� Austria and Switzerland (CH)

pAustria(A, T ) = pAustria(A)p(T |A)
pCH(A, T ) = pCH(A)p(T |A)

p(T |A) is likely to be the same
across countries
p(A) is country-specific
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Independent causal mechanisms

For a model to correctly predict the effect of interventions, it needs to
have components that are robust when moving from an observational
distribution to certain interventional distributions.

Principle (Independent Causal Mechanisms (ICM))

The causal generative process of a system’s variables is composed of
autonomous modules that do not inform or influence each other.

In the two-variable case, say (A, T ), it reduces to independence between

� the cause distribution p(A)

� the mechanism producing the effect from the cause p(T |A)
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Principle (Sparse Mechanism Shift)

Small distribution changes manifest in a sparse or local way in the
causal/disentangled factorization; i.e., they should usually not affect all
factors simultaneously.

In a non-causal/entangled factorization, many terms will be affected simultaneously if we

change one of the physical mechanisms responsible for a system’s statistical dependencies

In the Altitude-Temperature setting, if we change country

� we only need to change p(A) if we use the causal factorization

� we need to change both p(T ) and p(A |T ) in the entangled factorization
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Causal discovery

� Domain knowledge often unavailable or incomplete

� Need to learn the causal DAG
Typically using observational (passive) data which are abundant

� Hopeless?

� Surprisingly the problem becomes easier when the number of
variables becomes higher
because there are nontrivial conditional independence properties
among the variables implied by a causal structure
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Constraint-based methods

Basic idea

� Test which (conditional) independencies can be inferred from the data

� Try to find a graph which implies them

Assumption (Faithfulness)

The only (conditional) independencies satisfied by p(·) are those implied
by the causal Markov condition
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Example: faithfulness-SCM

X1 := U1

X2 = αX1 + U2

X3 = βX1 + γX2 + U3

with Ui
iid∼ N (0, 1).

X1

X2 X3

Causal DAG G
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From the model:

X3 = (β + αγ)X1 + γU2 + U3

Thus, if β + αγ = 0, then:
X1⊥⊥X3

But this is not implied by the graph G.

Faithfulness is violated
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Markov equivalence

Definition (Markov equivalence)

Two DAGs are said to be Markov equivalent if they encode the same
conditional independence (CI) statements.
The set of all DAGs encoding the same CI’s is called a Markov equivalence
class
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Chains, forks and colliders

(a) Chains

X Y Z

X Y Z

(b) Fork

Y

X Z

(a) and (b) imply X⊥⊥Z |Y
(and no others)

(c) Collider
(v-structure)

Y

X Z

(c) implies X⊥⊥Z
(but X 6⊥⊥ Z |Y )

(a) and (b): same Markov equiv class
(c) singleton equivalence class
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Markov equivalence: characterization

Result

Two DAG’s are Markov equivalent iff they have the same skeleton and the
same v-structures

Skeleton of Chains (a), Fork (b) and Collider (c)

X Y Z

v-structures

(a) and (b) NO
(c) YES
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Constraint-based methods: computations

3 Skeleton estimation

� Test X⊥⊥Y |W for all W ⊆ X \ {X,Y }.
� if no such W is found, connect X and Y
� Expensive

3 Edge orientation

� Direct edges avoiding v-structures and
cycles.

+ PC (Spirtes et al. 2000) more efficient

+ FCI (handles hidden confounders)

7 Limitations

� Only a Markov equivalence class is
recovered.

� CI testing is a hard problem

Complete graph

CI tests

Remove edges

Orient edges
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Score-based methods

� G: set of DAG’s over variables {X1, . . . , Xn}
� D = {x1 . . . ,xm}: observed data

� S(G |D): score reflecting how well a G-graphical statistical model fits
D

� Most methods assume a parametric model which factorises according
to G

� SBIC(G |D) = log p(D |G, θ̂MLE)− k
2
logm

k = # of parameters

� SBAY ES(G |D) = p(D |G) =
∫

Θ
p(D |G, θ)p(θ |G)dθ

Ĝ = argmax
G∈G

S(G |D)

With a prior p(G) can also use the full posterior

p(G |D) ∝ p(D |G)p(G)
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Causal Reasoning

Causal reasoning starts from a known (or postulated) causal graph and
answers causal queries of interest

Two steps

(i) identify the query, i.e., derive an estimand that only involves
observable quantities

(ii) make inference on the estimand using data
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Definition (Treatment effect)

Outcome Y and binary treatment T

τ := E[Y | do(T = 1)]− E[Y | do(T = 0)]

Outcome Y and continuous X

τ(x′) :=

[
∂

∂x
E[Y | do(X = x)

]
x=x′

Treatment effects involve interventional expressions
Causal reasoning answers queries
using observational data together with a causal model
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Identification

Given a causal graph and no hidden confounders

The causal effect can be identified through the interventional distribution

p(X1, . . . , Xn | do(Xi = xi)) = δ(xi)
∏
j 6=i

p(Xj | PAj) (g)

The interventional distribution of any Xh (h 6= i) can be obtained by
marginalization

Remarks

Formula (g) has been named

� g-formula
Robins (1986)

� truncated factorization
Pearl (2000, 2009)

It relies on the independence of
causal mechanisms
i.e. intervening on a variable leaves
the remaining causal conditionals
unaffected
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Evaluation of treatment effect with three covariates {X1, X2, X3}

X3

T Y

X1 X2

Factorization of interventional distribution

p(y, t, x1, x2, x3 | do(T = t)) = δ(t)p(x1)p(x2 |x1)p(y |x2, x3, t)p(x3 |x2, t)

Target distribution p(y | do(T = t))
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Adjustment set

p(y | do(T = t)) =
∑

x1,x2,x3

p(y, t, x1, x2, x3 | do(T = t))

=
∑
x2

∑
x1

p(x2 |x1)p(x1)
∑
x3

p(y |x2, x3, t)p(x3 |x2, t)

=
∑
x2

p(x2)p(y |x2, t)

x2 is a valid adjustment set
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More adjustment sets

It can be proved using graphical criteria or otherwise that

Y⊥⊥X1 | {T,X2} (1.a)

X2⊥⊥T |X1 (1.b)

p(y | do(T = t)) =
∑
x1,x2

p(x1, x2)p(y |x1, x2, t), using (1.a) (2.a)

=
∑
x1

p(x1)
∑
x2

p(x2 |x1, t)p(y |x1, x2, t), using (1.b)

=
∑
x1

p(x1)p(y |x1, t) (2.b)

Both {x1, x2} by (2.a) and {x1} by (2.b) are valid adjustment sets.
However {x1, x3} is not.
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Adjustment sets

Whenever
p(y | do(T = t)) =

∑
z

p(z)p(y | z, t) (3)

z is called a valid adjustment set

Under causal sufficiency (no hidden variables) there exist graphical criteria
to find valid adjustment sets

To estimate the involved quantities in (3)
additional assumptions are required
in particular overlap:
for any t and feature values x, X, 0 < p(T = t |X = x) < 1

Optimal adjustment sets

Henckel et al 2022
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Estimation of treatment effect by regression adjustment

Z: adjustment set

Expected value of the outcome Y following an intervention on T

E[Y | do(T = t)] =
∑
y

yp(y | do(T = t))

=
∑
y

y
∑
z

p(z)p(y | z, t)

=
∑
z

p(z)
∑
y

yp(y | z, t) =
∑
z

p(z)E[Y | z, t]

=
∑
z

p(z)f(z, t)

(Average) Treatment Effect (ATE)

τ = E[Y | do(T = 1)]− E[Y | do(T = 0)]

=
∑
z

p(z)[f(z, 1)− f(z, 0)]
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{(yi, ti, zi)}mi=1: observational sample

f̂(z, t): estimator of E[Y | z, t] based on a regression model

Regression adjusted plug-in estimator of ATE

τ̂1 =
1

m

m∑
i=1

(f̂(z, 1)− f̂(z, 0))

An alternative robust estimator

τ̂2 =
1

m1

∑
i:ti=1

(yi − f̂(zi, 0)) +
1

m0

∑
i:ti=0

(f̂(zi, 1)− yi)

m1: # obs in the treatment group
m0 # obs in the control group
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Further methods to estimate ATE

� Matching and Weighting

� Propensity Score-Methods
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Causal inference with unobserved confounders

In general this is not possible

In some particular situations ATE can still be estimated

� Front-Door Adjustment (Mediator)

� Instrumental Variables (IV)

� Mendelian randomization: special case

� Regression Discontinuity Design
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DAGs versus Potential Outcomes

Reference
Guido Imbens
Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for
Empirical Practice in Economics. Journal of Economic Literature, 2020

DAGs

� J Pearl

� Precursor: S Wright (path analysis)
� Computer Science, Statistics, Epidemiology, ML/AI

� Graph captures the way researchers think about causality

� Powerful way to illustrate assumptions

� Systematic way to answer causal queries (do-calculus)

� Useful in complex models (large number of variables)

Guido Consonni Causal Reasoning O’Bayes 2025, June 8, Athens



Potential outcomes

� D Rubin

� Precursors: R Fisher, J Neyman (RCT’s)
� Economics, Econometrics, Social sciences

� Critical assumptions (monotonocity, convexity) easier to explain and
incorporate

� Connects well to economic theory

� Has established canonical identification strategies for problems with a
small number of variables

� Deals nicely with heterogeneity, study designs, estimation
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Imbens’s Conclusions

� The DAG approach fully deserves the attention of all researchers and
users of causal inference.

� Two key questions:

+ Should it be the framework of choice for all causal questions, or at
least in the social sciences?

+ Should it be the starting point for teaching about causality?

� Imbens’s answer to both questions is NO
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� Causality is a key-topic
A Gelman & A Vehtari, 2021

What are the Most Important Statistical Ideas of the Past 50 Years?

� DAGs or Potential Outcomes
Opportunity not a problem
Each has its own merits

� DAG approach resonates better within the Computer Science
community
ML/AI
It features already in several research areas
Promises to have a tremendous impact in the near future
It is a bridge between Statistics-Data Science-AI
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A Few Topics

� Causal Representation Learning.

Learn variables from data
Interventions, reasoning, planning

� Causal Auto encoder
Build a generative causal model

� Learning transferable mechanisms
Solving multiple tasks
in multiple environments
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