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P-values and why do we need a new theory for hypothesis testing? 



P-values
• History: Karl Pearson (1900) and Ronald Fisher (1925)



Why do we need a new theory for hypothesis testing?

• 100 years later: replicability crisis in social and medical science 


• Medicine: J. Ioannidis, Why most published research findings are false , PLoS 
Medicine 2(8) (2005).


• Social Science: 270 authors, Estimating the reproducibility of psychological 
science, Science 349 (6251), 2015.



Why do we need a new theory for hypothesis testing?

Reproducibility crisis in social and medical science


Causes:


• publication bias


• fraud


• lab environment vs. natural environment


• use of p-values



What is a p-value actually?

We wish to test a null hypothesis , often in contrast with an alternative 
hypothesis .
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What is a p-value actually?
We wish to test a null hypothesis , often in contrast with an alternative 
hypothesis .


P-value:


• “Probability under the null hypothesis of obtaining a real-valued test statistic at 
least as extreme as the one obtained”


• “The P-value is the smallest level of significance that would lead to rejection of the 
null hypothesis H0 with the given data.”


• “P-value is the level of marginal significance within a statistical hypothesis test, 
representing the probability of the occurrence of a given event.”


• “A p-value, or probability value, is a number describing how likely it is that your 
data would have occurred by random chance.”

ℋ0
ℋ1



What do doctors know about statistics?
A controlled trial of a new treatment led to the conclusion that it 
is significantly better than placebo: p < 0.05. Which of the 
following statements do you prefer?   menti.com 3125 6009
A. It has been proved that the treatment is better than placebo.


B. If the treatment is not effective, there is less than 5 percent chance of 
obtaining such results.


C. The observed effect of the treatment is so large that there is less than 5 
percent chance that the treatment is no better than placebo.


D. I do not really know what a p-value is and do not want to guess.

http://menti.com


What do doctors know about statistics?
A controlled trial of a new treatment led to the conclusion that it 
is significantly better than placebo: p < 0.05. Which of the 
following statements do you prefer?
A. It has been proved that the treatment is better than placebo. 20%


B. If the treatment is not effective, there is less than 5 percent chance of 
obtaining such results. 13%


C. The observed effect of the treatment is so large that there is less than 5 
percent chance that the treatment is no better than placebo. 51%


D. I do not really know what a p-value is and do not want to guess. 16%



Definition of the p-value

A p-value  is a random variable (i.e. a function) such that for every , 
for ,


                                        .

p P ∈ ℋ0
α ∈ [0,1]

P(p ≤ α) ≤ α



Stopping rules and p-values

• Suppose you are doing a trial on 70 subjects. The p-value is promising but 
just not significant (p = 0.06). Your boss says there is some more money for 
adding 10 more subjects to the the trial. What do you do?
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Stopping rules and p-values

• Suppose you are doing a trial on 70 subjects. The p-value is promising but 
just not significant (p = 0.06). Your boss says there is some more money for 
adding 10 more subjects to the the trial. What do you do?


• John et al (2012): 55% of psychologists admits to “Deciding whether to 
collect more data after looking to see whether the results were significant”.


• This is called optional stopping, and invalidates p-values and their error 
guarantees



Other disadvantages with p-values

• Combining evidence from different (possibly dependent) studies 
 
Hospitals A and B perform similar trials, and they report p-values  and . 
How to combine the evidence? 
 
A meta-analysis is done. However, the subsequent studies were only done 
because the previous studies were promising, so there is a complicated (and 
unknown) dependency. How to combine the evidence?

pA pB



Other disadvantages with p-values

• Combining evidence from different (possibly dependent) studies (e.g. two 
different populations; meta-analysis)


• Limited applicability: unknown probabilities (counterfactuals) 
 
Consider two weather forecasters A and B. On sunny days,  

(RAIN)  (RAIN), and on rainy days their accuracy is approximately the 
same. Is B better than A? We can’t do this with p-values.
PA ≥ PB



Other disadvantages with p-values

• Combining evidence from different (possibly dependent) studies (e.g. two 
different populations; meta-analysis)


• Limited applicability: unknown probabilities (counterfactuals) 
 
Consider two weather forecasters A and B. On sunny days,  

(RAIN)  (RAIN). Is B better than A?


• Interpretational problems: misunderstanding (hence misuse) of p-values

PA ≥ PB



Are Bayes factors the solution?



Claims about optional stopping with Bayesian methods

• Lindley, 1957; Raiffa and Schlaifer, 1961, Edwards et al., 1963: 


(with Bayesian methods) “it is entirely appropriate to collect data until a point 
has been proven or disproven, or until the data collector runs out of time, 

money, or patience.” 


•



Claims about optional stopping with Bayesian methods

• Lindley, 1957; Raiffa and Schlaifer, 1961, Edwards et al., 1963: 


(with Bayesian methods) “it is entirely appropriate to collect data until a point 
has been proven or disproven, or until the data collector runs out of time, 

money, or patience.”


• Renewed interest: Wagenmakers 2007; Rouder 2014; Schönbrodt et al, 2017; 
Yu et al, 2014;  Sanborn and Hills, 2014



“Bayes factors can handle optional stopping”
But what does that mean mathematically?




“Bayes factors can handle optional stopping”
But what does that mean mathematically?


 


Problems:


• Different authors mean different things by this claim


• Claims are often shown only in an informal sense, or restricted contexts



See the paper:


Optional Stopping with Bayes Factors: a 
categorization and extension of folklore results, 

with an application to invariant situations


Allard Hendriksen, Rianne de Heide, Peter Grünwald


Bayesian Analysis 16(3):961–989, 2021, doi:10.1214/20-BA1234.



“Bayes factors can handle optional stopping”
But what does that mean mathematically?


Problems:


• Different authors mean different things by this claim


• Claims are often shown only in an informal sense, or restricted contexts


Goal of the paper: 


• systematic overview and formalization


• formal verification (proofs) and extension



Overview

• Identify 3 main mathematical senses in which Bayes factor methods can 
handle optional stopping


• Explain the practical notions of these notions



Conclusion

Whether Bayes factors can handle optional stopping is subtle, 
depending on the specifics of the given situation: what models are 
used, what priors, and what is the goal of the analysis.



Setting

• Hypothesis testing:  versus , sets of distributions, represented by unique 
probability distributions  and 
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•  and  are Bayes marginal distributions: 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Setting

• Hypothesis testing:  versus , sets of distributions, represented by unique 
probability distributions  and 


•  and  are Bayes marginal distributions: 
 

      


•      

H0 H1
P̄0 P̄1

P̄0 P̄1

P̄0(A) = ∫Θ0

Pθ|0(A)dπ0(θ); P̄1(A) = ∫Θ1

Pθ|1(A)dπ1(θ)

π(H1 |A)
π(H0 |A)

=
P(A |H1)
P(A |H0)

⋅
π(H1)
π(H0)



1)  -independenceτ

• Given a stopping time , and a data sequence  compatible with , we have 
 

 

 

                                       

τ xn τ

π(H1 |Xn = xn, τ = n)
π(H0 |Xn = xn, τ = n)

=
P(τ = n |Xn = xn, H1) ⋅ π(H1 |Xn = xn)
P(τ = n |Xn = xn, H0) ⋅ π(H0 |Xn = xn)

=
π(H1 |Xn = xn)
π(H0 |Xn = xn)



1)  -independenceτ

• Given a stopping time , and a data sequence  compatible with , we have 
 

 

 

                                       


•                      

τ xn τ

π(H1 |Xn = xn, τ = n)
π(H0 |Xn = xn, τ = n)

=
P(τ = n |Xn = xn, H1) ⋅ π(H1 |Xn = xn)
P(τ = n |Xn = xn, H0) ⋅ π(H0 |Xn = xn)

=
π(H1 |Xn = xn)
π(H0 |Xn = xn)

γ(xn)

π(H1 |Xn = xn, τ = n)
π(H0 |Xn = xn, τ = n)

=

β(xn)

P̄1(Xn = xn)
P̄0(Xn = xn)

⋅
π(H1)
π(H0)



2) Calibration
Rouder (2014)

• Nominal posterior odds: 


• Observed posterior odds:    

γ(xn)
π(H1 |γ(xn) = c)
π(H0 |γ(xn) = c)
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2) Calibration
Rouder (2014)

• Nominal posterior odds: 


• Observed posterior odds:    


• Calibration under optional stopping:  


• Note: result relies on priors not depending on the stopping time

γ(xn)
π(H1 |γ(xn) = c)
π(H0 |γ(xn) = c)

c =
P(β(xτ) = c |H1)
P(β(xτ) = c |H0)



3) (semi-)frequentist optional stopping
Def. A function  is said to be a frequentist sequential test 
with significance level  that is robust under optional stopping relative to  if for 
all , 
 
                            


that is, the probability that there exists an  at which  is bounded by .

S : ∪T
i=m 𝒳i → {0,1}

α H0
P ∈ H0

P(∃n ≤ T : S(Xn) = 1) ≤ α,

n S(Xn) = 1 α



3) (semi-)frequentist optional stopping
Def. A function  is said to be a frequentist sequential test 
with significance level  that is robust under optional stopping relative to  if for 
all , 
 
                            


that is, the probability that there exists an  at which  is bounded by .


Fact:    

S : ∪T
i=m 𝒳i → {0,1}

α H0
P ∈ H0

P(∃n ≤ T : S(Xn) = 1) ≤ α,

n S(Xn) = 1 α

P̄0 (∃n, 0 < n ≤ T :
1

β(xn)
≤ α) ≤ α
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Why should we care?

• This all shows that Bayesian methods can deal with optional stopping, right? 
(Except for the case of fully frequentist OS with composite )


• Well, it’s more subtle…


• In many practical situations, results become non-intepretable or even 
undefined.

H0
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• Bayesians view probabilities as degree of belief
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When problems arise: Subjective vs. Pragmatic 
and Default priors

• Bayesians view probabilities as degree of belief, which is expressed as a prior


• Then the prior is updated with data, and the posterior can be used to base 
decisions on


• For subjectivists, this is the full story


• Objectivists: indifference, a single, rational probability function


• Pragmatic Bayesians: default priors
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When problems arise: Subjective vs. Pragmatic 
and Default priors

• Recent papers that advocate the use of Bayesian methods are based on 
default priors (Rouder et al. 2009, 2012; Jamil et al. 2016)


• Within the statistics community, a pragmatic stance is most common 
nowadays


• Pragmatic/default priors have some arbitrary aspects: sensitivity analyses 
become important


• -independence and calibration are fully subjective definitions of OS!τ
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• Type 0: Right-Haar priors on group invariant nuisance parameters
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Problems with different types of priors
• Type 0: Right-Haar priors on group invariant nuisance parameters


• Type I: Default/pragmatic priors that do not depend on any aspects of the 
experimental set-up


• Type II: Default/pragmatic priors not of type 0 or I



The problem with type II priors

• Not defined under optional stopping
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The problem with type I priors

• Example: Jeffreys’ Bayesian t-tests: Cauchy prior (type I) on the effect size


• The Issue: do we really believe that a Cauchy prior accurately reflects our prior 
beliefs? Example: test of fertilizer on wheat growth.


• Objective Bayesians change their priors depending on the inference task


• The prior is used as a tool in inferring likely parameters or hypotheses, and not 
to be thought of as something that prescribes how actual data will arise or 
tend to look like 


•



Strong calibration

Fixed sample size                                              Optional stopping



Conclusion
• Can we do optional stopping with Bayes factors? 
 
Whether Bayes factors can handle optional stopping is subtle, depending on 
the specifics of the given situation: what models are used, what priors, and 
what is the goal of the analysis.


• For most practical Bayesian hypothesis testing problems, one should be 
careful with optional stopping



Bayes factors and full frequentist optional stopping

• When  is simple, we have the bound 
 

 
 
 
(we will later see that BF here is an e-value)

H0

P(∃t ∈ ℕ, BF > 1/α) ≤ α



Bayes factors and optional stopping

• When  is simple, we have the bound 
 




• When  is composite, this does not hold, i.e., the type I error guarantee is 
not preserved under optional stopping, just as with p-values (exception: 
group-invariant Bayes factors, s.a. the Bayesian t-test, though it becomes 
subtle as to which filtration the process is then adapted to)

H0

P(∃t ∈ ℕ, BF > 1/α) ≤ α

H0



e-values
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L2 = L1 ⋅ (1 + λ2B2) = 1.12
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∏
s=1

(1 + λsBs)



A fair coin?
                                                                                             


                                                                               (on heads)


                                                                           


                                                                          (on heads)


                                                                            


 ;      Under ,  is a non-negative martingale.
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[Lτ] = 1



A fair coin?

 ;      Under ,  is a non-negative martingale.


At any stopping time , we have  (optional stopping theorem).


Ville’s inequality:                                                  p-value equivalent:


                           


Lt :=
t

∏
s=1

(1 + λsBs) ℋ0 (Lt)t∈ℕ

τ 𝔼ℋ0
[Lτ] = 1

ℙ(∃t ∈ ℕ : Lt > 1/α) ≤ α ℙ(∃t ∈ ℕ : pt > 1/α) = 1



A fair coin?

 ;      Under ,  is a non-negative martingale.


At any stopping time , we have  (optional stopping theorem).


Ville’s inequality:                                                  p-value equivalent:


                            


 is called an e-value


 measures evidence against 

Lt :=
t

∏
s=1

(1 + λsBs) ℋ0 (Lt)t∈ℕ

τ 𝔼ℋ0
[Lτ] = 1

ℙ(∃t ∈ ℕ : Lt > 1/α) ≤ α ℙ(∃t ∈ ℕ : pt > 1/α) = 1

Lt

Lt ℋ0
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• e-value: non-negative random variable  satisfying 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P ∈ ℋ0 : 𝔼P[E] ≤ 1.
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• e-value: non-negative random variable  satisfying 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E-values

• e-value: non-negative random variable  satisfying 
 
                      for all 


• But what is a good e-value?


• GROW: Growth-Rate Optimal in Worst case: the e-value  that achieves 
 
           

 
                  

E

P ∈ ℋ0 : 𝔼P[E] ≤ 1.

E*

max
E:E is an e-value

min
P∈ℋ1

𝔼P[log E]



Safe Testing (Grünwald, De Heide, Koolen)
• The GROW e-value  exists (for composite ), and satisfies 




• if the inf is achieved by some , the GROW e-value takes a simple form:  



• GROW e-values  can be found by a double KL-
minimization problem  and they satisfy  

 

E*W1
ℋ0

𝔼Z∼PW1
[log E*W1

] = sup
E∈ℰ

𝔼Z∼PW1
[log E] = inf

W0∈𝒲0

D(PW1
∥ PW0

)

W∘
0

E*W1
= pW1

(Z)/pW∘
0
(Z)

E*𝒲1
= pW*1 (Z)/pW*0 (Z)
min

W1∈𝒲1

min
W0∈𝒲0

D(PW1
∥ PW0

)

inf
W∈𝒲1

𝔼Z∼PW
[log E*𝒲1

] = sup
E∈ℰ

inf
W∈𝒲1

𝔼Z∼PW
[log E] = D(PW*1 ∥ PW*0 )



Joint information projection



Simulation example: t-test



Advantages of e-values

• Any-time valid testing (validity under optional stopping)


• Easy combination (several studies/meta analysis)


• Easy interpretation: betting. High e-value is more evidence against 


• E-values can be constructed from different paradigms: frequentist, objective 
Bayesian, subjective Bayesian, strict Neyman-Pearsonian, and others


• Many interesting properties, e.g. in multiple testing allowing for general 
dependence in FDR methods, derandomization of knock-offs, etc.

H0



A trial



A (real) trial

• Group A: standard boosters


• Group B: new boosters


• Outcome: no leakage (0) or leakage (1)


• Assumption: data is i.i.d. Bernoulli  
with parameter  determining the  
probability of leakage.

θ



A (real) trial

• Data streams  and ,


• 


• 


• Data is gathered in pairs. After each pair we calculate the e-value. 


• We have a Type I error guarantee if we do this. We can stop whenever we like, 
in particular, if the e-value exceeds 20.

Y1,A, Y2,A, … i.i.d.∼ PθA
Y1,B, Y2,B, … i.i.d.∼ PθB

ℋ0 : θA = θB

ℋ1 : θA ≠ θB



Analysis
• safe.prop.test(ya=ya, yb=yb, pilot=T)



How to do this with p-values?



How to do this with p-values?

• No idea about the effect size, not even in which direction.


• Pilot study with 12 trials in either group. 


• Then estimate the effect size.


• Then calculate the sample size needed.


• Then do the experiment.


• Suppose the (second) experiment would also take 12 nights: at least 18 
nights with leakage: stop early because of ethical reasons. Not even possible 
to report a p-value.



     Veni project: 
Multiple testing with e-values



Example: multiple testing in neuroimaging
130.000 voxels

Wible, Cynthia G. et al. “fMRI activity correlated with auditory hallucinations during performance of a working memory task: data from the FBIRN consortium study.” Schizophrenia bulletin 35 1 (2009): 47-57 .



Bringing flexibility to multiple testing

• Researchers want to work interactively with the data, which is not possible 
with current methods


• How can this be achieved? New theory of hypothesis testing with e-values    



Bringing flexibility to multiple testing

• Researchers want to work interactively with the data, which is not possible 
with current methods


• How can this be achieved? New theory of hypothesis testing with e-values    


• Current research aim: rigorous mathematical theory for multiple testing  
with e-values and e-processes



e-BH (Wang & Ramdas, 2021)
• Let  be the th order statistic of , from the largest to the smallest.


• Define the test procedure which rejects hypotheses with the largest  e-
values, where 
 

.


• This procedure controls the FDR at level  even under unknown arbitrary 
dependence between the e-values.


• BH and BY are special cases of e-BH. 

e[k] k e1, …, eK

k⋆
e

k⋆
e = max {k ∈ 𝒦 :

ke[k]

K
≥

1
α }

α



Exciting new result: bringing closure to FDR
With Jelle Goeman, Aldo Solari, Aaditya Ramdas, Neil Xu, Lasse Fisher

• Necessary and sufficient principle for multiple testing methods controlling an 
expected loss (think of FDR)

• Every such multiple testing method is a special case of a general closed testing 
procedure based on e-values.

• Uniform improvements of these methods

• Simultaneous error control

• Post-hoc flexibility for the user choice of alpha, target error rate, and sometimes even 
nominal error rate

• Restricted combinations possible - exploiting logical relationships between 
hypotheses



The e-Partitioning Principle of False Discovery Rate Control 
J Goeman, R de Heide, A Solari - arXiv preprint arXiv:2504.15946, 2025 

Bringing closure to FDR control: beating the e-Benjamini-Hochberg 
procedure 

Z Xu, L Fischer, A Ramdas - arXiv preprint arXiv:2504.11759, 2025

https://scholar.google.com/scholar?oi=bibs&cluster=11416264131596856009&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=10694734764032901360&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=10694734764032901360&btnI=1&hl=en


The future of e-values

• Many groups studying e-values now (in mathematical statistics, probability 
theory): e.g. CWI, CMU, ETH, Waterloo, London, Stanford, Twente…



    Questions?
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