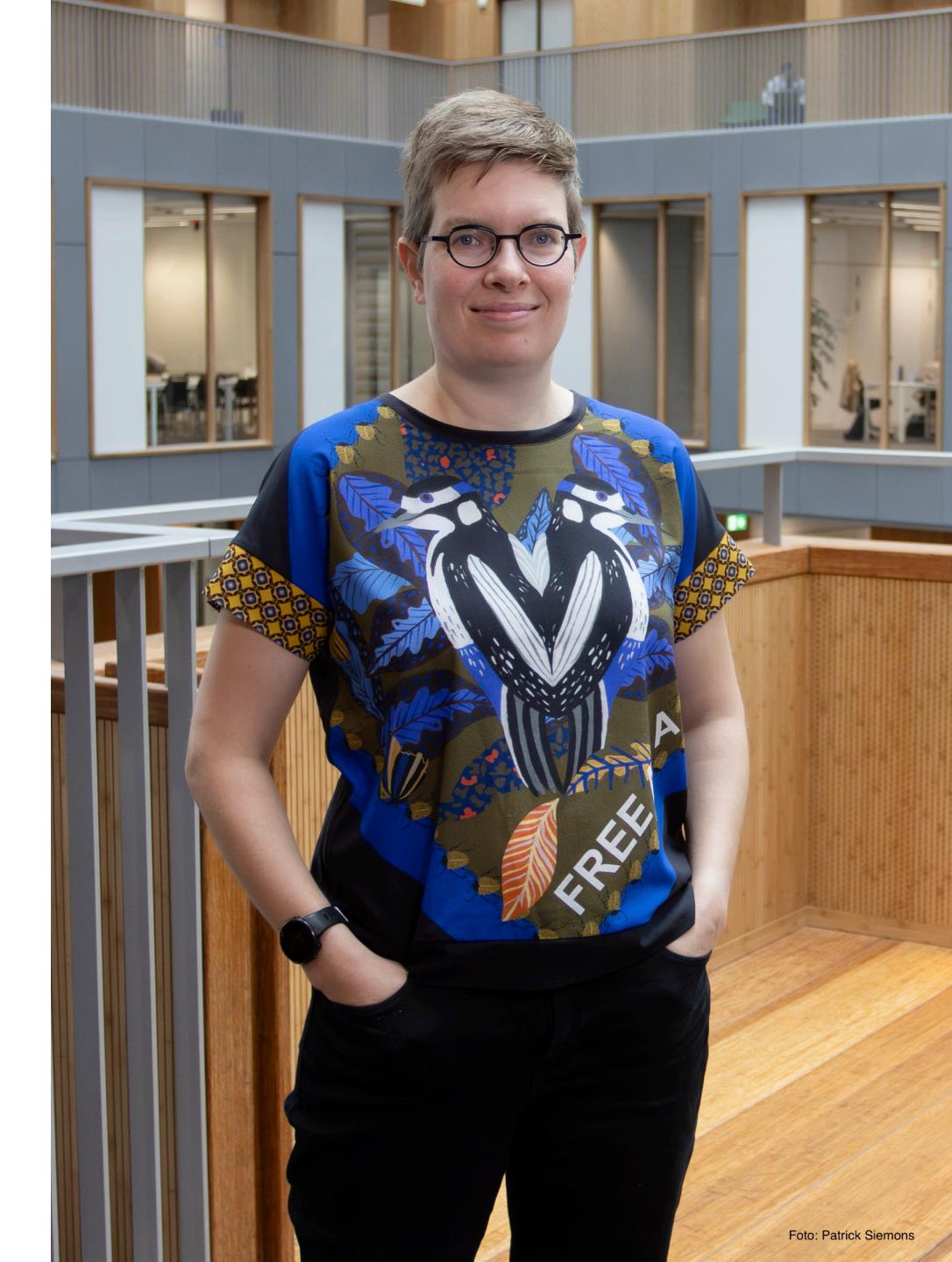
E-Values OBayes 2025 Tutorial

Dr. Rianne de Heide

Introduction

- @ University of Twente The Netherlands
- Mathematical Statistics, Machine Learning Theory
- Co-developed new theory of hypothesis testing with e-values
- Recognition: PhD thesis prize, Cor Baayen Early Career Researcher Award, NWO VENI & M2 grants, Bernoulli Society New Researcher Award 2025

rlands earning



Menu

p-values and why do we need a new theory for hypothesis testing?

• Are Bayes factors the solution?

e-values

• A trial

• Another e-value highlight: multiple testing

P-values and why do we need a new theory for hypothesis testing?

P-values

• History: Karl Pearson (1900) and Ronald Fisher (1925)

Why do we need a new theory for hypothesis testing?

100 years later: replicability crisis in social and medical science

- Medicine 2(8) (2005).
- science, Science 349 (6251), 2015.

• Medicine: J. Ioannidis, Why most published research findings are false, PLoS

Social Science: 270 authors, Estimating the reproducibility of psychological

Why do we need a new theory for hypothesis testing?

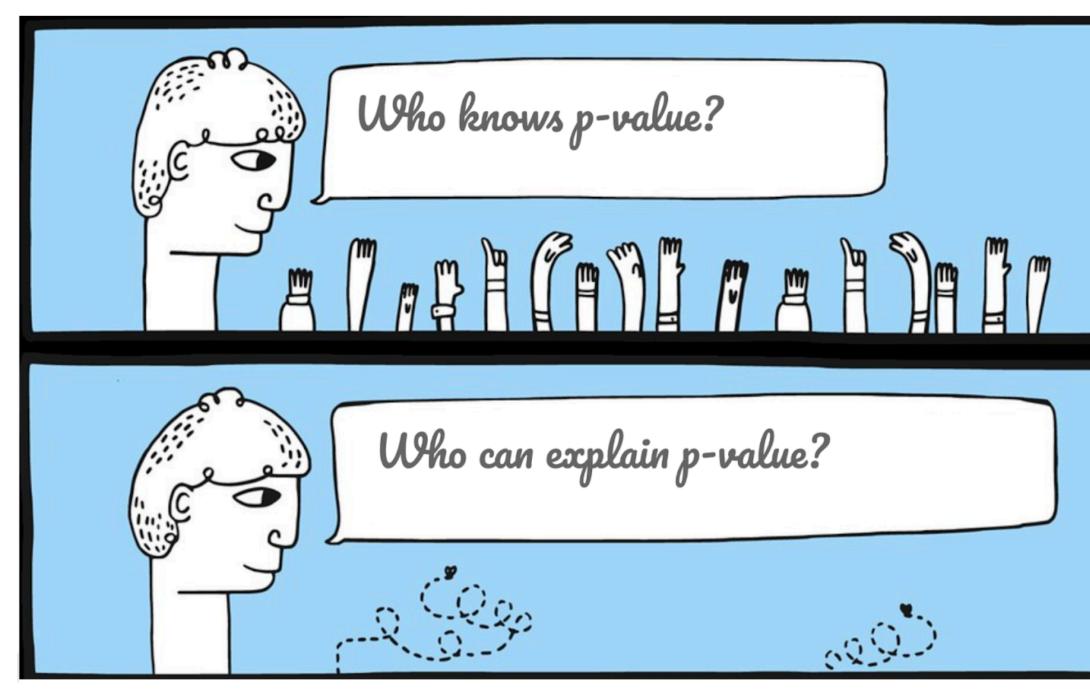
Reproducibility crisis in social and medical science

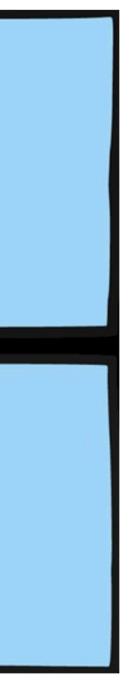
Causes:

- publication bias
- fraud
- lab environment vs. natural environment
- use of p-values

What is a p-value actually?

We wish to test a null hypothesis \mathcal{H}_0 , often in contrast with an alternative hypothesis \mathcal{H}_1 .





What is a p-value actually?

We wish to test a null hypothesis \mathcal{H}_0 , often in contrast with an alternative hypothesis \mathcal{H}_1 .

P-value:

- "Probability under the null hypothesis of obtaining a real-valued test statistic at least as extreme as the one obtained"
- "The P-value is the smallest level of significance that would lead to rejection of the null hypothesis H0 with the given data."
- "P-value is the level of marginal significance within a statistical hypothesis test, representing the probability of the occurrence of a given event."
- "A p-value, or probability value, is a number describing how likely it is that your data would have occurred by random chance."

What do doctors know about statistics?

is significantly better than placebo: p < 0.05. Which of the following statements do you prefer? menti.com 3125 6009

- A. It has been proved that the treatment is better than placebo.
- B. If the treatment is not effective, there is less than 5 percent chance of obtaining such results.
- C. The observed effect of the treatment is so large that there is less than 5 percent chance that the treatment is no better than placebo.
- I do not really know what a p-value is and do not want to guess. D.

A controlled trial of a new treatment led to the conclusion that it

What do doctors know about statistics?

is significantly better than placebo: p < 0.05. Which of the following statements do you prefer?

- A. It has been proved that the treatment is better than placebo. 20%
- B. If the treatment is not effective, there is less than 5 percent chance of obtaining such results. 13%
- C. The observed effect of the treatment is so large that there is less than 5 percent chance that the treatment is no better than placebo. 51%
- D. I do not really know what a p-value is and do not want to guess. 16%

A controlled trial of a new treatment led to the conclusion that it

Definition of the p-value

for $\alpha \in [0,1]$,

 $P(p \leq \alpha) \leq \alpha$.

A p-value p is a random variable (i.e. a function) such that for every $P \in \mathcal{H}_0$,

Stopping rules and p-values

adding 10 more subjects to the the trial. What do you do?

• Suppose you are doing a trial on 70 subjects. The p-value is promising but just not significant (p = 0.06). Your boss says there is some more money for

Stopping rules and p-values

adding 10 more subjects to the the trial. What do you do?

• John et al (2012): 55% of psychologists admits to "Deciding whether to

• Suppose you are doing a trial on 70 subjects. The p-value is promising but just not significant (p = 0.06). Your boss says there is some more money for

collect more data after looking to see whether the results were significant".

Stopping rules and p-values

adding 10 more subjects to the the trial. What do you do?

• John et al (2012): 55% of psychologists admits to "Deciding whether to

guarantees

• Suppose you are doing a trial on 70 subjects. The p-value is promising but just not significant (p = 0.06). Your boss says there is some more money for

collect more data after looking to see whether the results were significant".

This is called optional stopping, and invalidates p-values and their error

Other disadvantages with p-values

Combining evidence from different (possibly dependent) studies

How to combine the evidence?

unknown) dependency. How to combine the evidence?

- Hospitals A and B perform similar trials, and they report p-values p_A and p_R .
- A meta-analysis is done. However, the subsequent studies were only done because the previous studies were promising, so there is a complicated (and

Other disadvantages with p-values

 Combining evidence from different (possibly dependent) studies (e.g. two different populations; meta-analysis)

Limited applicability: unknown probabilities (counterfactuals)

Consider two weather forecasters A and B. On sunny days, same. Is B better than A? We can't do this with p-values.

 $P_A(\text{RAIN}) \geq P_B(\text{RAIN})$, and on rainy days their accuracy is approximately the

Other disadvantages with p-values

 Combining evidence from different (possibly dependent) studies (e.g. two different populations; meta-analysis)

Limited applicability: unknown probabilities (counterfactuals)

Consider two weather forecasters A and B. On sunny days, $P_A(\text{RAIN}) \geq P_B(\text{RAIN})$. Is B better than A?

Interpretational problems: misunderstanding (hence misuse) of p-values

Are Bayes factors the solution?

Claims about optional stopping with Bayesian methods

- Lindley, 1957; Raiffa and Schlaifer, 1961, Edwards et al., 1963:

(with Bayesian methods) "it is entirely appropriate to collect data until a point has been proven or disproven, or until the data collector runs out of time, money, or patience."

Claims about optional stopping with Bayesian methods

- Lindley, 1957; Raiffa and Schlaifer, 1961, Edwards et al., 1963:
 - (with Bayesian methods) "it is entirely appropriate to collect data until a point has been proven or disproven, or until the data collector runs out of time, money, or patience."

• Renewed interest: Wagenmakers 2007; Rouder 2014; Schönbrodt et al, 2017; Yu et al, 2014; Sanborn and Hills, 2014

"Bayes factors can handle optional stopping"

But what does that mean mathematically?

"Bayes factors can handle optional stopping"

But what does that mean mathematically?

Problems:

- Different authors mean different things by this claim
- Claims are often shown only in an informal sense, or restricted contexts

See the paper:

Allard Hendriksen, Rianne de Heide, Peter Grünwald

Bayesian Analysis 16(3):961–989, 2021, doi:10.1214/20-BA1234.

Optional Stopping with Bayes Factors: a categorization and extension of folklore results, with an application to invariant situations

"Bayes factors can handle optional stopping"

But what does that mean mathematically?

Problems:

- Different authors mean different things by this claim
- Claims are often shown only in an informal sense, or restricted contexts

Goal of the paper:

- systematic overview and formalization
- formal verification (proofs) and extension

Overview

handle optional stopping

• Explain the practical notions of these notions

Identify 3 main mathematical senses in which Bayes factor methods can

Conclusion

Whether Bayes factors can handle optional stopping is subtle, depending on the specifics of the given situation: what models are used, what priors, and what is the goal of the analysis.

Setting

• Hypothesis testing: H_0 versus H_1 , so probability distributions \bar{P}_0 and \bar{P}_1

• Hypothesis testing: H_0 versus H_1 , sets of distributions, represented by unique

Setting

- probability distributions \bar{P}_0 and \bar{P}_1
- P_0 and P_1 are Bayes marginal distributions: $\bar{P}_0(A) = \int_{\Theta} P_{\theta|0}(A) d\pi_0(\theta); \quad \bar{I}$

• Hypothesis testing: H_0 versus H_1 , sets of distributions, represented by unique

$$\bar{P}_1(A) = \int_{\Theta_1} P_{\theta|1}(A) \mathrm{d}\pi_1(\theta)$$

Setting

- probability distributions \bar{P}_0 and \bar{P}_1
- \bar{P}_0 and \bar{P}_1 are Bayes marginal distributions:

$$\bar{P}_{0}(A) = \int_{\Theta_{0}} P_{\theta|0}(A) d\pi_{0}(\theta); \quad \bar{P}_{1}(A) = \int_{\Theta_{1}} P_{\theta|1}(A) d\pi_{1}(\theta)$$
$$\frac{\pi(H_{1}|A)}{\pi(H_{0}|A)} = \frac{P(A|H_{1})}{P(A|H_{0})} \cdot \frac{\pi(H_{1})}{\pi(H_{0})}$$

• Hypothesis testing: H_0 versus H_1 , sets of distributions, represented by unique

1) τ -independence

- $\frac{\pi(H_1 | X^n = x^n, \tau = n)}{\pi(H_0 | X^n = x^n, \tau = n)} = \frac{P(\tau = n | X^n = x^n, H_1) \cdot \pi(H_1 | X^n = x^n)}{P(\tau = n | X^n = x^n, H_0) \cdot \pi(H_0 | X^n = x^n)}$

• Given a stopping time τ , and a data sequence x^n compatible with τ , we have $= \frac{\pi(H_1 | X^n = x^n)}{\pi(H_0 | X^n = x^n)}$

1) τ -independence

$$\frac{\pi(H_1 | X^n = x^n, \tau = n)}{\pi(H_0 | X^n = x^n, \tau = n)} = \frac{P(\tau = n | X^n = x^n, H_1) \cdot \pi(H_1 | X^n = x^n)}{P(\tau = n | X^n = x^n, H_0) \cdot \pi(H_0 | X^n = x^n)}$$
$$= \frac{\pi(H_1 | X^n = x^n)}{\pi(H_0 | X^n = x^n)}$$

$$\frac{\gamma(x^n)}{\pi(H_1 \mid X^n = x^n, \tau = n)}$$

$$\pi(H_0 \mid X^n = x^n, \tau = n)$$

• Given a stopping time τ , and a data sequence x^n compatible with τ , we have

$$= \frac{\bar{\rho}(x^{n})}{\bar{P}_{1}(X^{n} = x^{n})} \cdot \frac{\pi(H_{1})}{\pi(H_{0})}$$

2) Calibration Rouder (2014)

• Nominal posterior odds: $\gamma(x^n)$

Observed posterior odds:

 $\pi(H_1 \mid z)$ $\pi(H_0 \mid z)$

$$\gamma(x^n) = c)$$
$$\gamma(x^n) = c)$$

2) Calibration Rouder (2014)

• Nominal posterior odds: $\gamma(x^n)$

• Observed posterior odds: $\frac{\pi(H_1)}{\pi(H_0)}$

Calibration under optional stopping:

$$\gamma(x^n) = c)$$
$$\gamma(x^n) = c)$$

:
$$c = \frac{P(\beta(x^{\tau}) = c \mid H_1)}{P(\beta(x^{\tau}) = c \mid H_0)}$$

2) Calibration **Rouder (2014)**

• Nominal posterior odds: $\gamma(x^n)$

 $\frac{\pi(H_1 \mid \gamma)}{\pi(H_0 \mid \gamma)}$ Observed posterior odds:

- Calibration under optional stopping
- Note: result relies on priors not depending on the stopping time

$$\gamma(x^n) = c)$$
$$\gamma(x^n) = c)$$

:
$$c = \frac{P(\beta(x^{\tau}) = c \mid H_1)}{P(\beta(x^{\tau}) = c \mid H_0)}$$

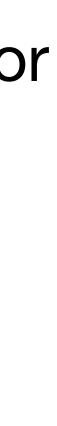
3) (semi-)frequentist optional stopping

Def. A function $S: \bigcup_{i=m}^{T} \mathscr{X}^i \to \{0,1\}$ is said to be a frequentist sequential test all $P \in H_0$,

$P(\exists n \leq T : S(X^n) = 1) \leq \alpha$,

- with significance level α that is robust under optional stopping relative to H_0 if for

- that is, the probability that there exists an n at which $S(X^n) = 1$ is bounded by α .



3) (semi-)frequentist optional stopping

Def. A function $S: \bigcup_{i=m}^{T} \mathscr{X}^i \to \{0,1\}$ is said to be a frequentist sequential test all $P \in H_0$,

$P(\exists n \leq T : S(X^n) = 1) \leq \alpha,$

Fact:
$$\bar{P}_0\left(\exists n, 0 < n \le T : \frac{1}{\beta(x^n)} \le \alpha\right) \le \alpha$$

- with significance level α that is robust under optional stopping relative to H_0 if for

that is, the probability that there exists an n at which $S(X^n) = 1$ is bounded by α .

Why should we care?

(Except for the case of fully frequentist OS with composite H_0)

• This all shows that Bayesian methods can deal with optional stopping, right?

Why should we care?

(Except for the case of fully frequentist OS with composite H_0)

Well, it's more subtle...

This all shows that Bayesian methods can deal with optional stopping, right?

Why should we care?

(Except for the case of fully frequentist OS with composite H_0)

Well, it's more subtle...

In many practical situations, results become non-intepretable or even undefined.

• This all shows that Bayesian methods can deal with optional stopping, right?

Bayesians view probabilities as degree of belief

• Bayesians view probabilities as degree of belief, which is expressed as a prior

- Bayesians view probabilities as degree of belief, which is expressed as a prior Then the prior is updated with data, and the posterior can be used to base
- decisions on

- Bayesians view probabilities as degree of belief, which is expressed as a prior Then the prior is updated with data, and the posterior can be used to base
- decisions on

• For subjectivists, this is the full story

- decisions on

- For subjectivists, this is the full story
- Objectivists: indifference, a single, rational probability function

Bayesians view probabilities as degree of belief, which is expressed as a prior Then the prior is updated with data, and the posterior can be used to base

- Bayesians view probabilities as degree of belief, which is expressed as a prior Then the prior is updated with data, and the posterior can be used to base
- decisions on

- For subjectivists, this is the full story
- Objectivists: indifference, a single, rational probability function
- Pragmatic Bayesians: *default* priors

default priors (Rouder et al. 2009, 2012; Jamil et al. 2016)

Recent papers that advocate the use of Bayesian methods are based on such

- default priors (Rouder et al. 2009, 2012; Jamil et al. 2016)
- Within the statistics community, a *pragmatic* stance is most common nowadays

Recent papers that advocate the use of Bayesian methods are based on

- Recent papers that advocate the use of Bayesian methods are based on *default* priors (Rouder et al. 2009, 2012; Jamil et al. 2016)
- Within the statistics community, a *pragmatic* stance is most common nowadays
- Pragmatic/default priors have some arbitrary aspects: sensitivity analyses become important

- Recent papers that advocate the use of Bayesian methods are based on default priors (Rouder et al. 2009, 2012; Jamil et al. 2016)
- Within the statistics community, a *pragmatic* stance is most common nowadays
- Pragmatic/default priors have some arbitrary aspects: sensitivity analyses become important

• τ -independence and calibration are fully subjective definitions of OS!

Problems with different types of priors

• Type 0: Right-Haar priors on group invariant nuisance parameters

Problems with different types of priors

• Type 0: Right-Haar priors on group invariant nuisance parameters

experimental set-up

• Type I: Default/pragmatic priors that do not depend on any aspects of the

Problems with different types of priors

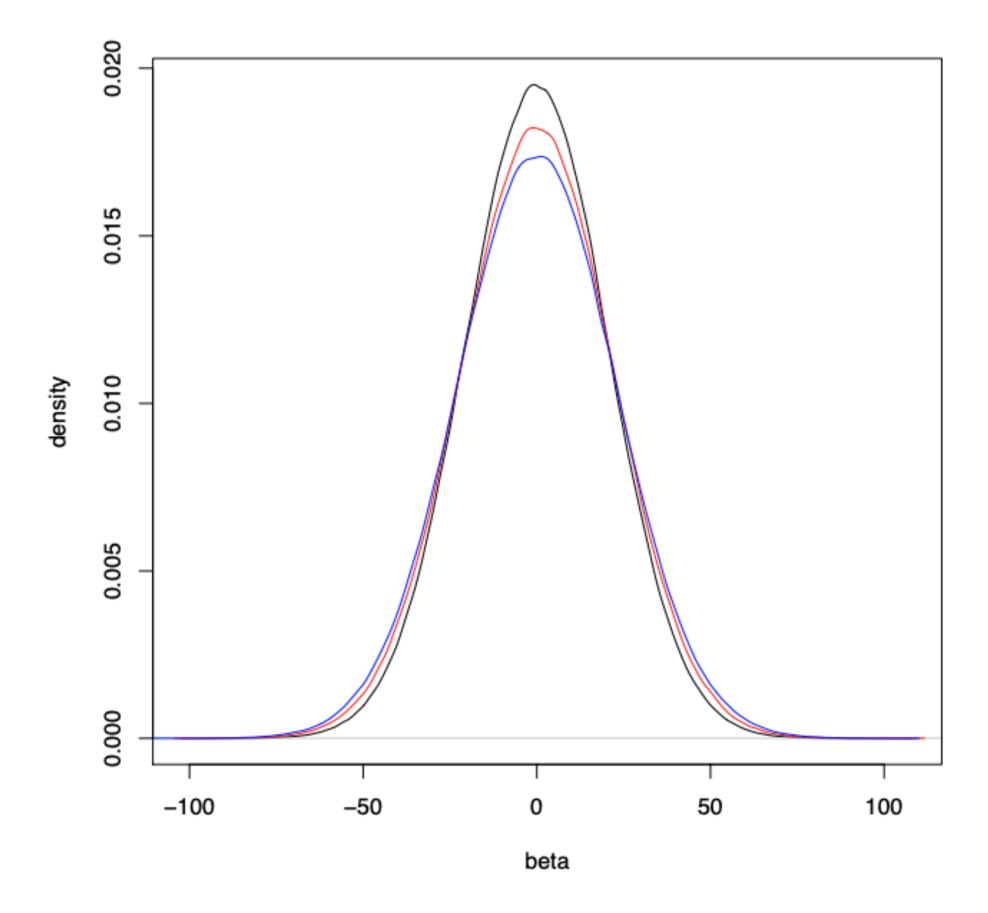
• Type 0: Right-Haar priors on group invariant nuisance parameters

experimental set-up

Type II: Default/pragmatic priors not of type 0 or I

• Type I: Default/pragmatic priors that do not depend on any aspects of the

The problem with type II priors



Not defined under optional stopping

 $y \sim N\left(\mu + X\beta, \sigma^2\right),$ $\beta \sim N\left(0, g\sigma^2 n(X'X)^{-1}\right),$ $g \sim \mathrm{IG}\left(\frac{1}{2}, \frac{\sqrt{2}}{8}\right).$

The problem with type I priors

• Example: Jeffreys' Bayesian t-tests: Cauchy prior (type I) on the effect size

The problem with type I priors

• Example: Jeffreys' Bayesian t-tests: Cauchy prior (type I) on the effect size

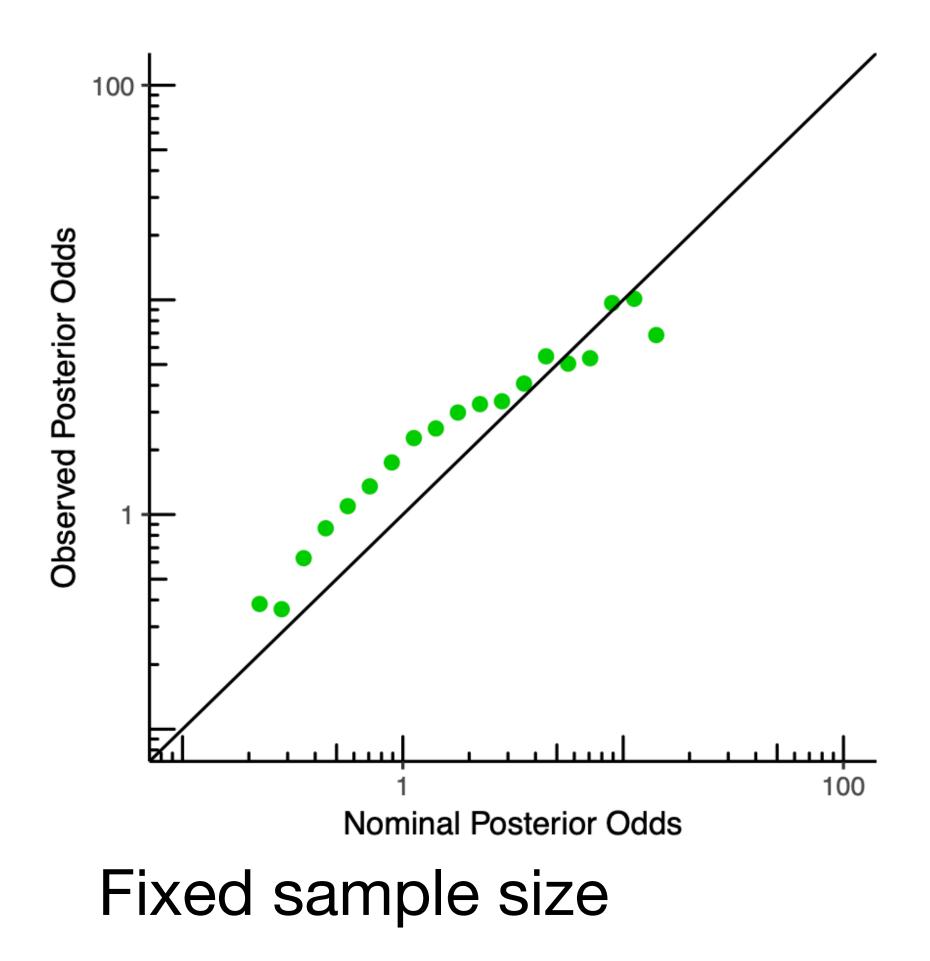
 The Issue: do we really believe that a Cauchy prior accurately reflects our prior beliefs? Example: test of fertilizer on wheat growth.

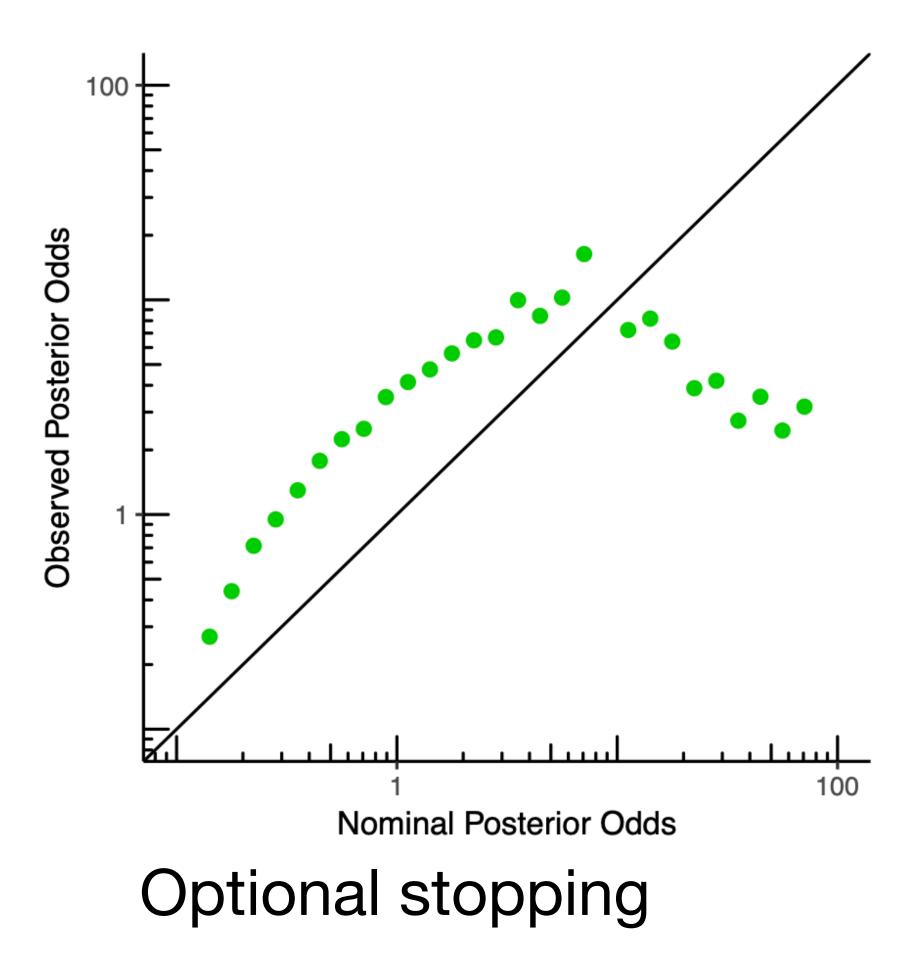
The problem with type I priors

• Example: Jeffreys' Bayesian t-tests: Cauchy prior (type I) on the effect size

- The Issue: do we really believe that a Cauchy prior accurately reflects our prior beliefs? Example: test of fertilizer on wheat growth.
- Objective Bayesians change their priors depending on the inference task
- The prior is used as a tool in inferring likely parameters or hypotheses, and not to be thought of as something that prescribes how actual data will arise or tend to look like

Strong calibration





Conclusion

Can we do optional stopping with Bayes factors?

Whether Bayes factors can handle optional stopping is subtle, depending on the specifics of the given situation: what models are used, what priors, and what is the goal of the analysis.

• For most practical Bayesian hypothesis testing problems, one should be careful with optional stopping

Bayes factors and full frequentist optional stopping

• When H_0 is simple, we have the bound $P(\exists t \in \mathbb{N}, \mathsf{BF} > 1/\alpha) \leq \alpha$

(we will later see that BF here is an *e-value*)

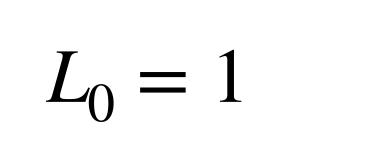
Bayes factors and optional stopping

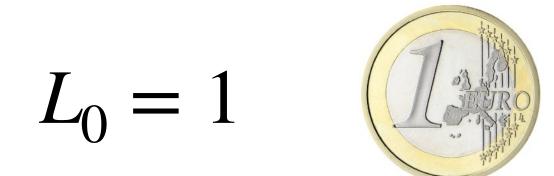
• When H_0 is simple, we have the bound $P(\exists t \in \mathbb{N}, \mathsf{BF} > 1/\alpha) \leq \alpha$

subtle as to which filtration the process is then adapted to)

• When H_0 is composite, this does not hold, i.e., the type I error guarantee is not preserved under optional stopping, just as with p-values (exception: group-invariant Bayes factors, s.a. the Bayesian t-test, though it becomes

e-values





$\lambda_1 = 0.2$ (on heads)

$\lambda_1 = 0.2$ (on heads)

 $B_1 = -1$

$\lambda_1 = 0.2$ (on heads)

 $B_1 = -1$

$\lambda_1 = 0.2$ (on heads) $L_1 = L_0 \cdot (1 + \lambda_1 B_1) = 0.8$

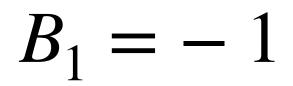
 $B_1 = -1$

$\lambda_1=0.2$ (on heads) $L_1=L_0\cdot(1+\lambda_1B_1)=0.8$ $\lambda_2=0.4$ (on heads)

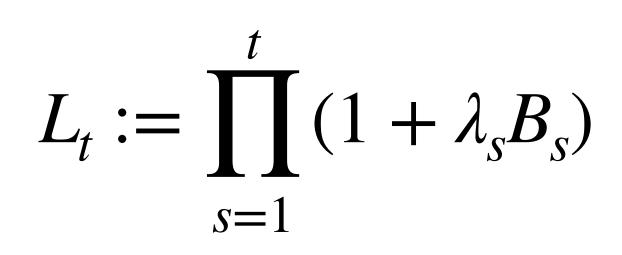
 $B_1 = -1$

 $B_2 = +1$

- $\lambda_1 = 0.2$ (on heads)
- $L_1 = L_0 \cdot (1 + \lambda_1 B_1) = 0.8$
 - $\lambda_2 = 0.4$ (on heads)
- $L_2 = L_1 \cdot (1 + \lambda_2 B_2) = 1.12$

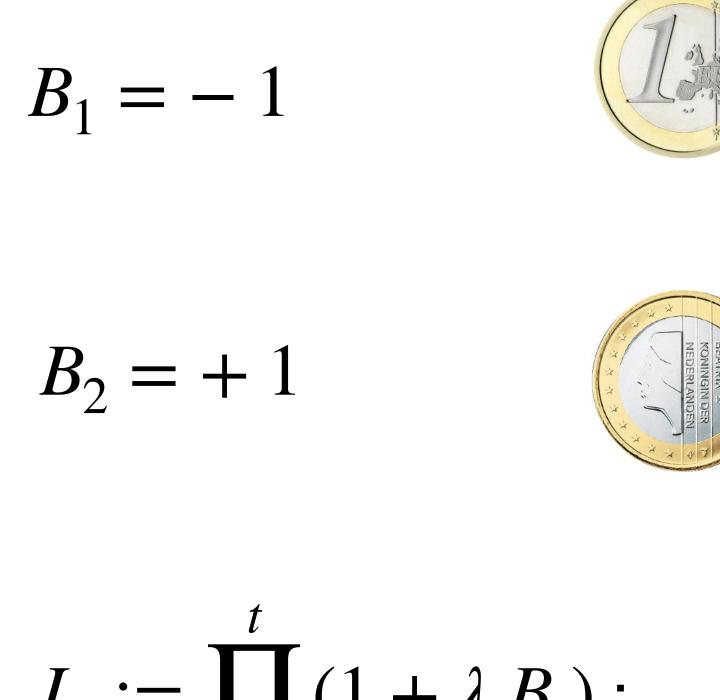


 $B_2 = +1$



 $L_0 = 1$

 $\lambda_1 = 0.2 \text{ (on heads)}$ $L_1 = L_0 \cdot (1 + \lambda_1 B_1) = 0.8$ $\lambda_2 = 0.4 \text{ (on heads)}$ $L_2 = L_1 \cdot (1 + \lambda_2 B_2) = 1.12$



s=1

 $L_0 = 1$

- $\lambda_1 = 0.2$ (on heads) $L_1 = L_0 \cdot (1 + \lambda_1 B_1) = 0.8$ $\lambda_2 = 0.4$ (on heads) $L_2 = L_1 \cdot (1 + \lambda_2 B_2) = 1.12$
- $L_t := [(1 + \lambda_s B_s);$ Under \mathscr{H}_0 , $(L_t)_{t \in \mathbb{N}}$ is a non-negative martingale.

$$L_t := \prod_{s=1}^t (1 + \lambda_s B_s); \quad \text{Under } \mathcal{X}$$

At any stopping time τ , we have $\mathbb{E}_{\mathscr{H}_0}[L_{\tau}] = 1$ (optional stopping theorem).

\mathscr{H}_0 , $(L_t)_{t\in\mathbb{N}}$ is a non-negative martingale.

A fair coin?

$$L_t := \prod_{s=1}^t (1 + \lambda_s B_s); \quad \text{Under } \mathcal{X}$$

At any stopping time τ , we have $\mathbb{E}_{\mathscr{H}_0}[L_{\tau}] = 1$ (optional stopping theorem). p-value equivalent: $\mathbb{P}(\exists t \in \mathbb{N} : p_t > 1/\alpha) = 1$

Ville's inequality:

 $\mathbb{P}(\exists t \in \mathbb{N} : L_t > 1/\alpha) \leq \alpha$

\mathcal{H}_0 , $(L_t)_{t \in \mathbb{N}}$ is a non-negative martingale.

A fair coin?

$$L_t := \prod_{s=1}^t (1 + \lambda_s B_s); \quad \text{Under } \mathcal{X}$$

At any stopping time τ , we have $\mathbb{E}_{\mathscr{H}_0}[L_{\tau}] = 1$ (optional stopping theorem). p-value equivalent: $\mathbb{P}(\exists t \in \mathbb{N} : p_t > 1/\alpha) = 1$

Ville's inequality:

 $\mathbb{P}(\exists t \in \mathbb{N} : L_t > 1/\alpha) \leq \alpha$

 L_t is called an e-value

 L_t measures evidence against \mathcal{H}_0

\mathscr{H}_0 , $(L_t)_{t \in \mathbb{N}}$ is a non-negative martingale.

• e-value: non-negative random variable E satisfying

for all $P \in \mathcal{H}_0$: $\mathbb{E}_P[E] \leq 1$.

• e-value: non-negative random variable E satisfying

for all
$$P \in \mathcal{H}_0$$
: \mathbb{E}_P

- We can define hypothesis tests based on e-values.
- $[E] \leq 1.$

• e-value: non-negative random variable E satisfying

for all
$$P \in \mathcal{H}_0$$
: \mathbb{E}_P

• But what is a good e-value?

- $_{P}[E] \leq 1.$

• e-value: non-negative random variable E satisfying

for all
$$P \in \mathcal{H}_0$$
: \mathbb{E}_P

- But what is a good e-value?

 $\max_{E:E \text{ is an e-value } P \in \mathscr{H}_1} \mathbb{E}_P[\log E]$

 $[E] \leq 1.$

• GROW: Growth-Rate Optimal in Worst case: the e-value E^* that achieves

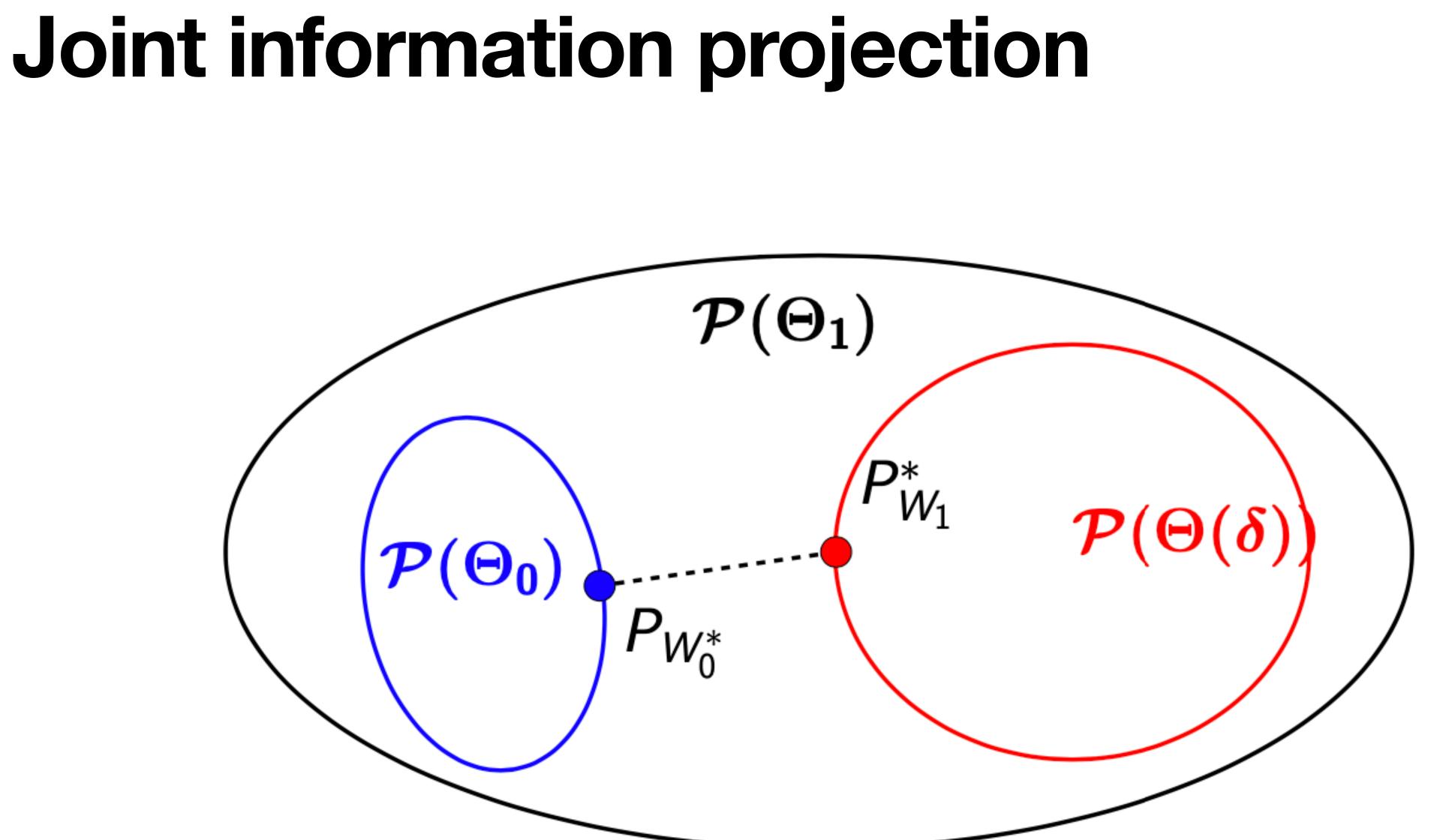
Safe Testing (Grünwald, De Heide, Koolen)

- The GROW e-value $E_{W_1}^*$ exists (for composite \mathcal{H}_0), and satisfies $\mathbb{E}_{Z \sim P_{W_1}}[\log E_{W_1}^*] = \sup_{E \in \mathscr{C}} \mathbb{E}_{Z \sim P_{W_1}}[\log E_{W_1}^*]$
- if the inf is achieved by some W_0° , the GROW e-value takes a simple form: $E_{W_1}^* = p_{W_1}(Z)/p_{W_0^*}(Z)$
- GROW e-values $E^*_{\mathcal{W}_1} = p_{W^*_1}(Z)/p_{W^*_0}(Z)$ can be found by a double KLminimization problem min min $D(P_{W_1} \parallel P_{W_0})$ and they satisfy $W_1 \in \mathcal{W}_1 \ W_0 \in \mathcal{W}_0$

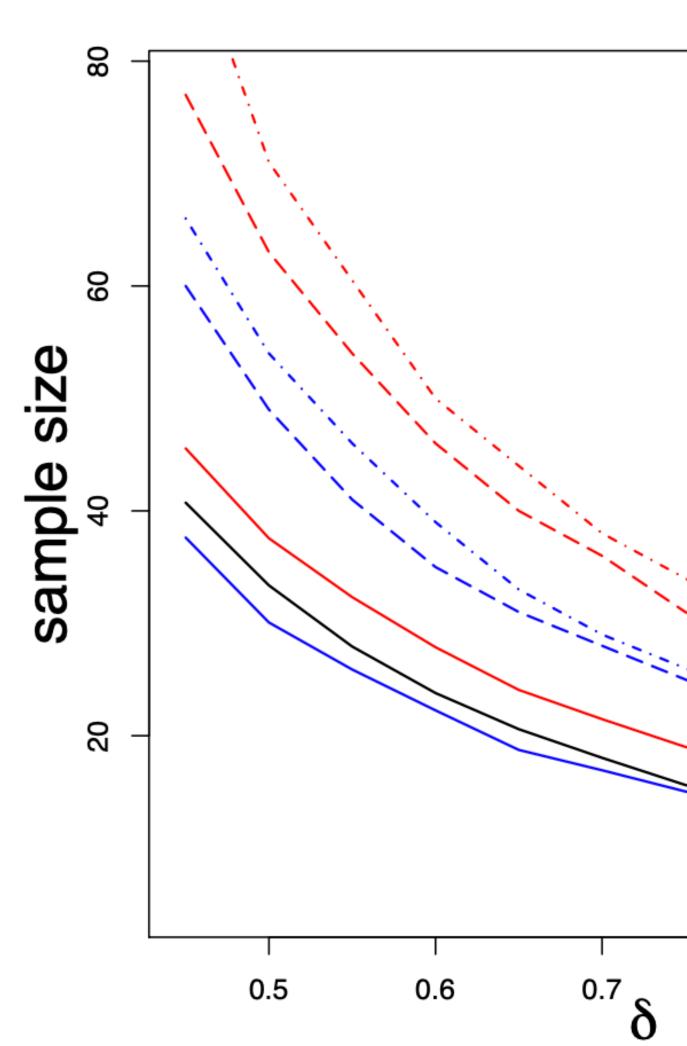
$$\inf_{W \in \mathscr{W}_1} \mathbb{E}_{Z \sim P_W}[\log E^*_{\mathscr{W}_1}] = \sup_{E \in \mathscr{E}} \inf_{W \in \mathscr{W}_1}$$

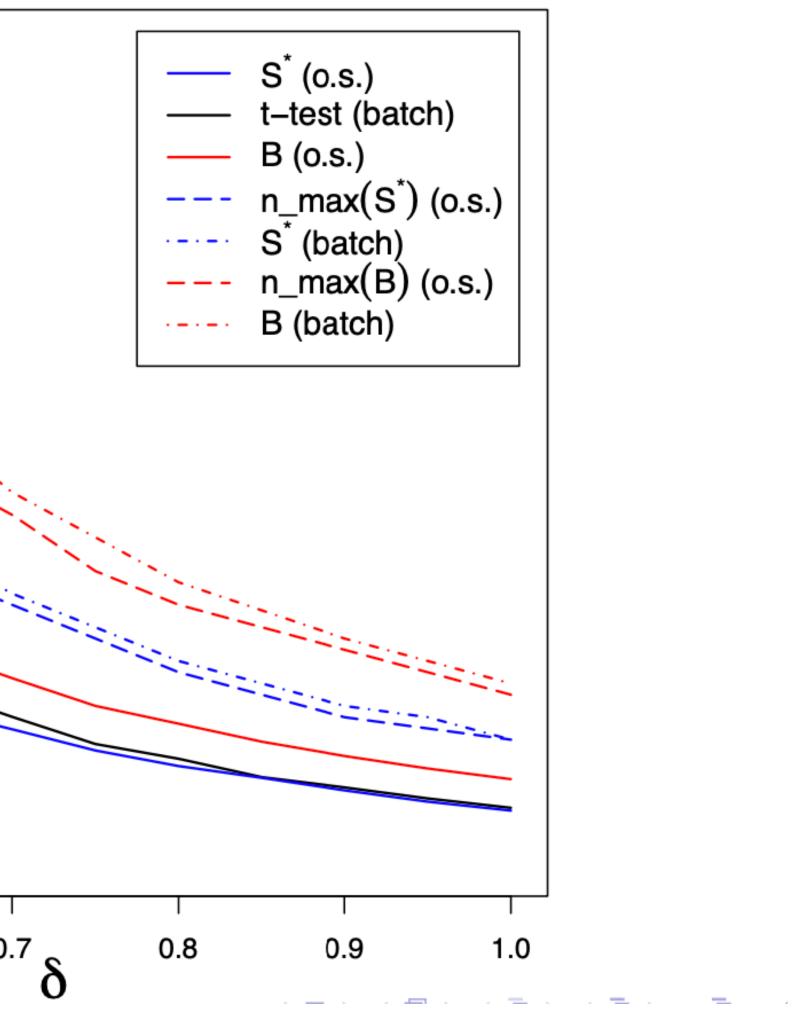
$$E] = \inf_{W_0 \in \mathcal{W}_0} D(P_{W_1} \parallel P_{W_0})$$

 $\mathbb{E}_{Z \sim P_{W}}[\log E] = D(P_{W_{1}^{*}} \parallel P_{W_{0}^{*}})$



Simulation example: t-test





Advantages of e-values

- Any-time valid testing (validity under optional stopping)
- Easy combination (several studies/meta analysis)
- Easy interpretation: betting. High e-value is more evidence against H_0
- E-values can be constructed from different paradigms: frequentist, objective Bayesian, subjective Bayesian, strict Neyman-Pearsonian, and others
- Many interesting properties, e.g. in multiple testing allowing for general dependence in FDR methods, derandomization of knock-offs, etc.

A trial

A (real) trial

- Group A: standard boosters
- Group B: new boosters
- Outcome: no leakage (0) or leakage (1)
- Assumption: data is i.i.d. Bernoulli with parameter θ determining the probability of leakage.

A (real) trial

• Data streams $Y_{1,A}, Y_{2,A}, \dots \stackrel{i.i.d.}{\sim} P_{\theta_A}$ and $Y_{1,B}, Y_{2,B}, \dots \stackrel{i.i.d.}{\sim} P_{\theta_B}$,

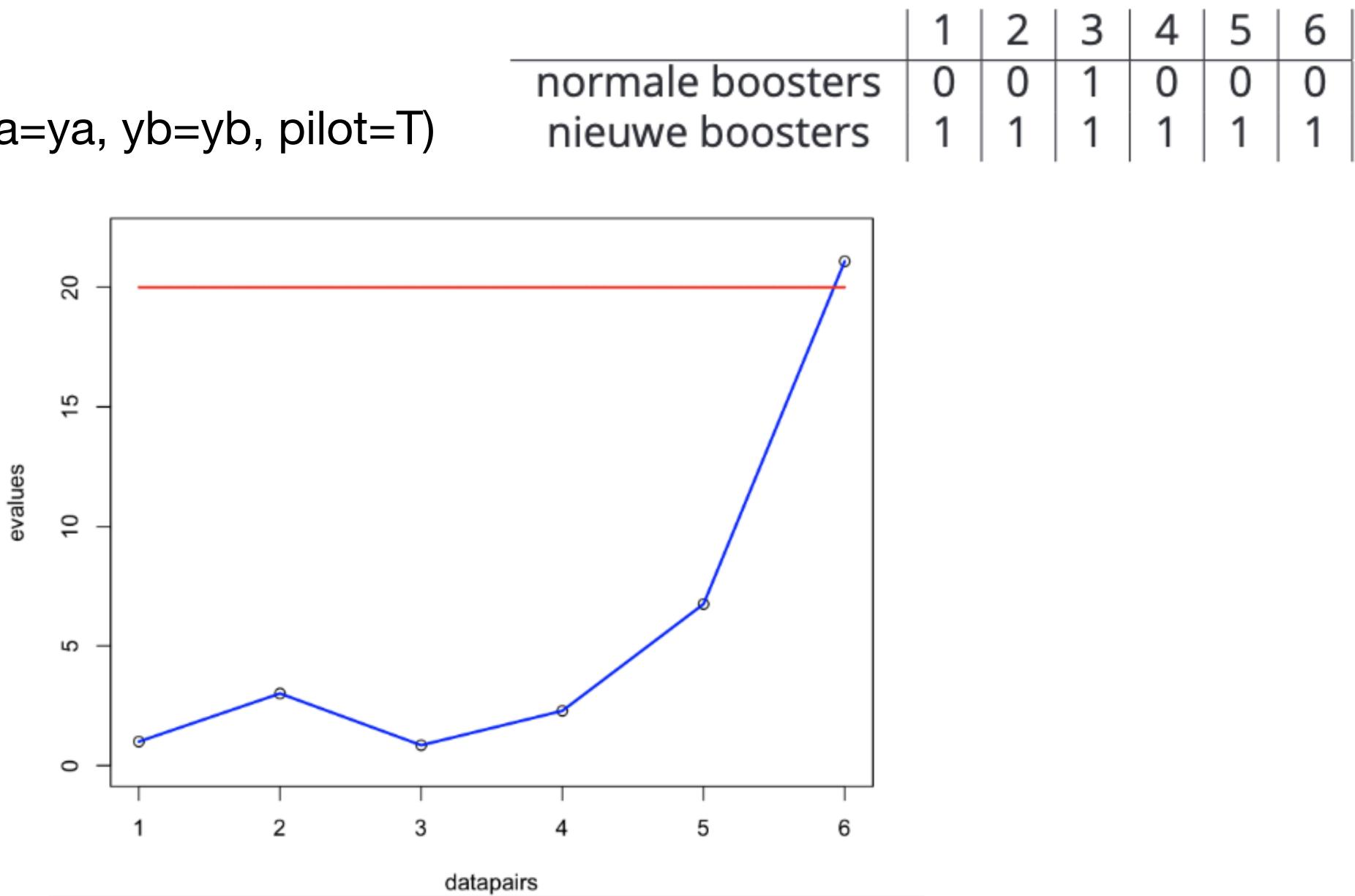
•
$$\mathscr{H}_0: \theta_A = \theta_B$$

- $\mathcal{H}_1: \theta_A \neq \theta_B$
- Data is gathered in pairs. After each pair we calculate the e-value.
- in particular, if the e-value exceeds 20.

We have a Type I error guarantee if we do this. We can stop whenever we like,

Analysis

safe.prop.test(ya=ya, yb=yb, pilot=T)



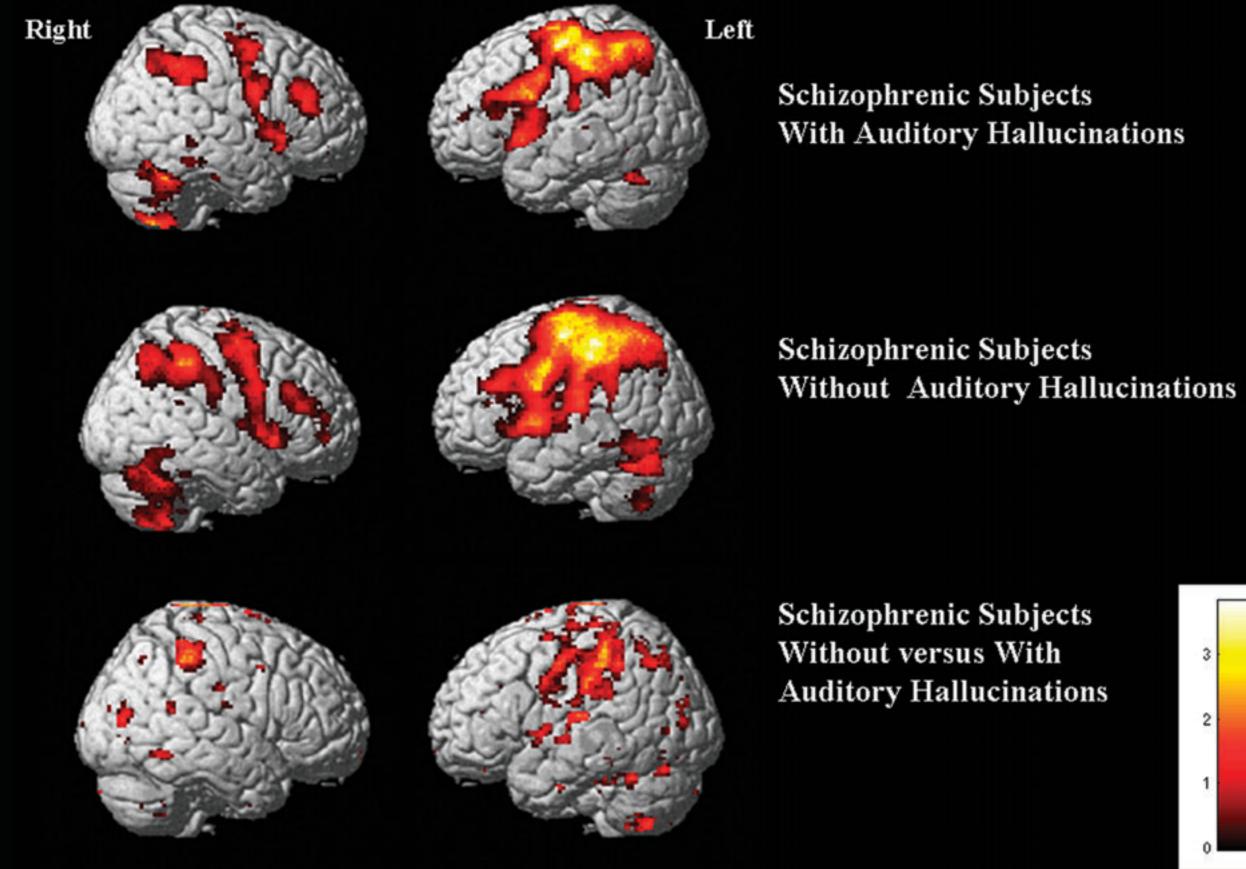
How to do this with p-values?

How to do this with p-values?

- No idea about the effect size, not even in which direction.
- Pilot study with 12 trials in either group.
- Then estimate the effect size.
- Then calculate the sample size needed.
- Then do the experiment.
- Suppose the (second) experiment would also take 12 nights: at least 18 nights with leakage: stop early because of ethical reasons. Not even possible to report a p-value.

Veni project: Multiple testing with e-values

Example: multiple testing in neuroimaging 130.000 voxels **Activation During The Probe Condition – Matched Groups**



Wible, Cynthia G. et al. "fMRI activity correlated with auditory hallucinations during performance of a working memory task: data from the FBIRN consortium study." Schizophrenia bulletin 35 1 (2009): 47-57.

Bringing flexibility to multiple testing

with current methods

• Researchers want to work interactively with the data, which is not possible

How can this be achieved? New theory of hypothesis testing with e-values

Bringing flexibility to multiple testing

with current methods

• Current research aim: rigorous mathematical theory for multiple testing with e-values and e-processes

• Researchers want to work interactively with the data, which is not possible

How can this be achieved? New theory of hypothesis testing with e-values

e-BH (Wang & Ramdas, 2021)

- Let $e_{[k]}$ be the kth order statistic of e_1, \ldots, e_K , from the largest to the smallest.
- Define the test procedure which rejects hypotheses with the largest k_e^{\star} evalues, where

$$k_e^{\star} = \max\left\{k \in \mathcal{K} : \frac{ke_{[k]}}{K} \ge \frac{1}{\alpha}\right\}$$

- This procedure controls the FDR at level α even under unknown arbitrary dependence between the e-values.
- BH and BY are special cases of e-BH.

Exciting new result: bringing closure to FDR With Jelle Goeman, Aldo Solari, Aaditya Ramdas, Neil Xu, Lasse Fisher

- Necessary and sufficient principle for multiple testing methods controlling an expected loss (think of FDR)
- Every such multiple testing method is a special case of a general closed testing procedure based on e-values.
- Uniform improvements of these methods
- Simultaneous error control
- Post-hoc flexibility for the user choice of alpha, target error rate, and sometimes even nominal error rate
- Restricted combinations possible exploiting logical relationships between hypotheses

Bringing closure to FDR control: beating the e-Benjamini-Hochberg procedure Z Xu, L Fischer, A Ramdas - arXiv preprint arXiv:2504.11759, 2025

<u>The e-Partitioning Principle of False Discovery Rate Control</u> J Goeman, R de Heide, A Solari - arXiv preprint arXiv:2504.15946, 2025

The future of e-values

theory): e.g. CWI, CMU, ETH, Waterloo, London, Stanford, Twente...



• Many groups studying e-values now (in mathematical statistics, probability

Questions?

References

- (1900).
- Fisher, R. Statistical Methods For Research Workers, Cosmo study guides. (1925).
- Ioannidis, J. Why most published research findings are false, PLoS Medicine 2(8) (2005).
- 270 authors, Estimating the reproducibility of psychological science, Science 349 (6251), 2015.
- Wulff HR, Andersen B, Brandenhoff P, Guttler F. What do doctors know about statistics?. Statistics in medicine. 1987 Jan;6(1):3-10.
- John LK, Loewenstein G, Prelec D. Measuring the prevalence of questionable research practices with incentives for truth telling. Psychological science. 2012 May;23(5):524-32.
- Hendriksen A, de Heide R, Grünwald P. Optional stopping with Bayes factors: a categorization and extension of folklore results, with an application to invariant situations. Bayesian Analysis. 2021 Sep;16(3):961-89.
- De Heide R, Grünwald PD. Why optional stopping can be a problem for Bayesians. Psychonomic Bulletin & Review. 2021 Jun;28:795-812.
- Grünwald, P., De Heide, R., Koolen, W., Safe Testing. JRSS-B (2024)
- Fisher, R. "Statistical Methods For Research Workers, Cosmo study guides." (1925).
- A. Ramdas Lecture: <u>http://stat.cmu.edu/~aramdas/betting/Feb11-class.pdf</u>

Pearson, K. "On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling". Philosophical Magazine. Series 5. 50 (302): 157–175.